Metamath Proof Explorer


Theorem dalemswapyzps

Description: Lemma for dath . Swap the Y and Z planes, along with dummy concurrency (center of perspectivity) atoms c and d , to allow reuse of analogous proofs. (Contributed by NM, 17-Aug-2012)

Ref Expression
Hypotheses dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
dalem.l ˙=K
dalem.j ˙=joinK
dalem.a A=AtomsK
dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
Assertion dalemswapyzps φY=ZψdAcA¬d˙Zcd¬c˙ZC˙d˙c

Proof

Step Hyp Ref Expression
1 dalem.ph φKHLCBaseKPAQARASATAUAYOZO¬C˙P˙Q¬C˙Q˙R¬C˙R˙P¬C˙S˙T¬C˙T˙U¬C˙U˙SC˙P˙SC˙Q˙TC˙R˙U
2 dalem.l ˙=K
3 dalem.j ˙=joinK
4 dalem.a A=AtomsK
5 dalem.ps ψcAdA¬c˙Ydc¬d˙YC˙c˙d
6 5 dalemddea ψdA
7 5 dalemccea ψcA
8 6 7 jca ψdAcA
9 8 3ad2ant3 φY=ZψdAcA
10 5 dalem-ddly ψ¬d˙Y
11 10 3ad2ant3 φY=Zψ¬d˙Y
12 simp2 φY=ZψY=Z
13 12 breq2d φY=Zψd˙Yd˙Z
14 11 13 mtbid φY=Zψ¬d˙Z
15 5 dalemccnedd ψcd
16 15 3ad2ant3 φY=Zψcd
17 5 dalem-ccly ψ¬c˙Y
18 17 3ad2ant3 φY=Zψ¬c˙Y
19 12 breq2d φY=Zψc˙Yc˙Z
20 18 19 mtbid φY=Zψ¬c˙Z
21 5 dalemclccjdd ψC˙c˙d
22 21 3ad2ant3 φY=ZψC˙c˙d
23 1 dalemkehl φKHL
24 23 3ad2ant1 φY=ZψKHL
25 7 3ad2ant3 φY=ZψcA
26 6 3ad2ant3 φY=ZψdA
27 3 4 hlatjcom KHLcAdAc˙d=d˙c
28 24 25 26 27 syl3anc φY=Zψc˙d=d˙c
29 22 28 breqtrd φY=ZψC˙d˙c
30 16 20 29 3jca φY=Zψcd¬c˙ZC˙d˙c
31 9 14 30 3jca φY=ZψdAcA¬d˙Zcd¬c˙ZC˙d˙c