Metamath Proof Explorer


Theorem dchrelbas

Description: A Dirichlet character is a monoid homomorphism from the multiplicative monoid on Z/nZ to the multiplicative monoid of CC , which is zero off the group of units of Z/nZ . (Contributed by Mario Carneiro, 18-Apr-2016)

Ref Expression
Hypotheses dchrval.g G=DChrN
dchrval.z Z=/N
dchrval.b B=BaseZ
dchrval.u U=UnitZ
dchrval.n φN
dchrbas.b D=BaseG
Assertion dchrelbas φXDXmulGrpZMndHommulGrpfldBU×0X

Proof

Step Hyp Ref Expression
1 dchrval.g G=DChrN
2 dchrval.z Z=/N
3 dchrval.b B=BaseZ
4 dchrval.u U=UnitZ
5 dchrval.n φN
6 dchrbas.b D=BaseG
7 1 2 3 4 5 6 dchrbas φD=xmulGrpZMndHommulGrpfld|BU×0x
8 7 eleq2d φXDXxmulGrpZMndHommulGrpfld|BU×0x
9 sseq2 x=XBU×0xBU×0X
10 9 elrab XxmulGrpZMndHommulGrpfld|BU×0xXmulGrpZMndHommulGrpfldBU×0X
11 8 10 bitrdi φXDXmulGrpZMndHommulGrpfldBU×0X