Metamath Proof Explorer


Theorem decpmatfsupp

Description: The mapping to the matrices consisting of the coefficients in the polynomial entries of a given matrix for the same power is finitely supported. (Contributed by AV, 5-Oct-2019) (Revised by AV, 3-Dec-2019)

Ref Expression
Hypotheses decpmate.p P=Poly1R
decpmate.c C=NMatP
decpmate.b B=BaseC
decpmatcl.a A=NMatR
decpmatfsupp.0 0˙=0A
Assertion decpmatfsupp RRingMBfinSupp0˙k0MdecompPMatk

Proof

Step Hyp Ref Expression
1 decpmate.p P=Poly1R
2 decpmate.c C=NMatP
3 decpmate.b B=BaseC
4 decpmatcl.a A=NMatR
5 decpmatfsupp.0 0˙=0A
6 5 fvexi 0˙V
7 6 a1i RRingMB0˙V
8 ovexd RRingMBk0MdecompPMatkV
9 oveq2 k=xMdecompPMatk=MdecompPMatx
10 1 2 3 4 5 decpmataa0 RRingMBs0x0s<xMdecompPMatx=0˙
11 7 8 9 10 mptnn0fsuppd RRingMBfinSupp0˙k0MdecompPMatk