Metamath Proof Explorer


Theorem deg1lt0

Description: A polynomial is zero iff it has negative degree. (Contributed by Stefan O'Rear, 1-Apr-2015)

Ref Expression
Hypotheses deg1z.d D=deg1R
deg1z.p P=Poly1R
deg1z.z 0˙=0P
deg1nn0cl.b B=BaseP
Assertion deg1lt0 RRingFBDF<0F=0˙

Proof

Step Hyp Ref Expression
1 deg1z.d D=deg1R
2 deg1z.p P=Poly1R
3 deg1z.z 0˙=0P
4 deg1nn0cl.b B=BaseP
5 1 2 3 4 deg1nn0cl RRingFBF0˙DF0
6 nn0nlt0 DF0¬DF<0
7 5 6 syl RRingFBF0˙¬DF<0
8 7 3expia RRingFBF0˙¬DF<0
9 8 necon4ad RRingFBDF<0F=0˙
10 1 2 3 deg1z RRingD0˙=−∞
11 mnflt0 −∞<0
12 10 11 eqbrtrdi RRingD0˙<0
13 12 adantr RRingFBD0˙<0
14 fveq2 F=0˙DF=D0˙
15 14 breq1d F=0˙DF<0D0˙<0
16 13 15 syl5ibrcom RRingFBF=0˙DF<0
17 9 16 impbid RRingFBDF<0F=0˙