Metamath Proof Explorer


Definition df-cytp

Description: The Nthcyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-cytp CytP=nmulGrpPoly1fldrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccytp classCytP
1 vn setvarn
2 cn class
3 cmgp classmulGrp
4 cpl1 classPoly1
5 ccnfld classfld
6 5 4 cfv classPoly1fld
7 6 3 cfv classmulGrpPoly1fld
8 cgsu classΣ𝑔
9 vr setvarr
10 cod classod
11 5 3 cfv classmulGrpfld
12 cress class𝑠
13 cc class
14 cc0 class0
15 14 csn class0
16 13 15 cdif class0
17 11 16 12 co classmulGrpfld𝑠0
18 17 10 cfv classodmulGrpfld𝑠0
19 18 ccnv classodmulGrpfld𝑠0-1
20 1 cv setvarn
21 20 csn classn
22 19 21 cima classodmulGrpfld𝑠0-1n
23 cv1 classvar1
24 5 23 cfv classvar1fld
25 csg class-𝑔
26 6 25 cfv class-Poly1fld
27 cascl classalgSc
28 6 27 cfv classalgScPoly1fld
29 9 cv setvarr
30 29 28 cfv classalgScPoly1fldr
31 24 30 26 co classvar1fld-Poly1fldalgScPoly1fldr
32 9 22 31 cmpt classrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr
33 7 32 8 co classmulGrpPoly1fldrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr
34 1 2 33 cmpt classnmulGrpPoly1fldrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr
35 0 34 wceq wffCytP=nmulGrpPoly1fldrodmulGrpfld𝑠0-1nvar1fld-Poly1fldalgScPoly1fldr