Description: The Nthcyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | df-cytp | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | ccytp | |
|
1 | vn | |
|
2 | cn | |
|
3 | cmgp | |
|
4 | cpl1 | |
|
5 | ccnfld | |
|
6 | 5 4 | cfv | |
7 | 6 3 | cfv | |
8 | cgsu | |
|
9 | vr | |
|
10 | cod | |
|
11 | 5 3 | cfv | |
12 | cress | |
|
13 | cc | |
|
14 | cc0 | |
|
15 | 14 | csn | |
16 | 13 15 | cdif | |
17 | 11 16 12 | co | |
18 | 17 10 | cfv | |
19 | 18 | ccnv | |
20 | 1 | cv | |
21 | 20 | csn | |
22 | 19 21 | cima | |
23 | cv1 | |
|
24 | 5 23 | cfv | |
25 | csg | |
|
26 | 6 25 | cfv | |
27 | cascl | |
|
28 | 6 27 | cfv | |
29 | 9 | cv | |
30 | 29 28 | cfv | |
31 | 24 30 26 | co | |
32 | 9 22 31 | cmpt | |
33 | 7 32 8 | co | |
34 | 1 2 33 | cmpt | |
35 | 0 34 | wceq | |