Metamath Proof Explorer


Definition df-cytp

Description: The Nthcyclotomic polynomial is the polynomial which has as its zeros precisely the primitive Nth roots of unity. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Assertion df-cytp CytP = n mulGrp Poly 1 fld r od mulGrp fld 𝑠 0 -1 n var 1 fld - Poly 1 fld algSc Poly 1 fld r

Detailed syntax breakdown

Step Hyp Ref Expression
0 ccytp class CytP
1 vn setvar n
2 cn class
3 cmgp class mulGrp
4 cpl1 class Poly 1
5 ccnfld class fld
6 5 4 cfv class Poly 1 fld
7 6 3 cfv class mulGrp Poly 1 fld
8 cgsu class Σ𝑔
9 vr setvar r
10 cod class od
11 5 3 cfv class mulGrp fld
12 cress class 𝑠
13 cc class
14 cc0 class 0
15 14 csn class 0
16 13 15 cdif class 0
17 11 16 12 co class mulGrp fld 𝑠 0
18 17 10 cfv class od mulGrp fld 𝑠 0
19 18 ccnv class od mulGrp fld 𝑠 0 -1
20 1 cv setvar n
21 20 csn class n
22 19 21 cima class od mulGrp fld 𝑠 0 -1 n
23 cv1 class var 1
24 5 23 cfv class var 1 fld
25 csg class - 𝑔
26 6 25 cfv class - Poly 1 fld
27 cascl class algSc
28 6 27 cfv class algSc Poly 1 fld
29 9 cv setvar r
30 29 28 cfv class algSc Poly 1 fld r
31 24 30 26 co class var 1 fld - Poly 1 fld algSc Poly 1 fld r
32 9 22 31 cmpt class r od mulGrp fld 𝑠 0 -1 n var 1 fld - Poly 1 fld algSc Poly 1 fld r
33 7 32 8 co class mulGrp Poly 1 fld r od mulGrp fld 𝑠 0 -1 n var 1 fld - Poly 1 fld algSc Poly 1 fld r
34 1 2 33 cmpt class n mulGrp Poly 1 fld r od mulGrp fld 𝑠 0 -1 n var 1 fld - Poly 1 fld algSc Poly 1 fld r
35 0 34 wceq wff CytP = n mulGrp Poly 1 fld r od mulGrp fld 𝑠 0 -1 n var 1 fld - Poly 1 fld algSc Poly 1 fld r