Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1 , but going from the alternating zeta function to the regular zeta function requires dividing by 1 - 2 ^ ( 1 - s ) , which has zeroes other than 1 . To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | df-zeta | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | czeta | |
|
1 | vf | |
|
2 | cc | |
|
3 | c1 | |
|
4 | 3 | csn | |
5 | 2 4 | cdif | |
6 | ccncf | |
|
7 | 5 2 6 | co | |
8 | vs | |
|
9 | cmin | |
|
10 | c2 | |
|
11 | ccxp | |
|
12 | 8 | cv | |
13 | 3 12 9 | co | |
14 | 10 13 11 | co | |
15 | 3 14 9 | co | |
16 | cmul | |
|
17 | 1 | cv | |
18 | 12 17 | cfv | |
19 | 15 18 16 | co | |
20 | vn | |
|
21 | cn0 | |
|
22 | vk | |
|
23 | cc0 | |
|
24 | cfz | |
|
25 | 20 | cv | |
26 | 23 25 24 | co | |
27 | 3 | cneg | |
28 | cexp | |
|
29 | 22 | cv | |
30 | 27 29 28 | co | |
31 | cbc | |
|
32 | 25 29 31 | co | |
33 | 30 32 16 | co | |
34 | caddc | |
|
35 | 29 3 34 | co | |
36 | 35 12 11 | co | |
37 | 33 36 16 | co | |
38 | 26 37 22 | csu | |
39 | cdiv | |
|
40 | 25 3 34 | co | |
41 | 10 40 28 | co | |
42 | 38 41 39 | co | |
43 | 21 42 20 | csu | |
44 | 19 43 | wceq | |
45 | 44 8 5 | wral | |
46 | 45 1 7 | crio | |
47 | 0 46 | wceq | |