Metamath Proof Explorer


Definition df-zeta

Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1 , but going from the alternating zeta function to the regular zeta function requires dividing by 1 - 2 ^ ( 1 - s ) , which has zeroes other than 1 . To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Assertion df-zeta ζ=ιf1cn|s1121sfs=n0k=0n1k(nk)k+1s2n+1

Detailed syntax breakdown

Step Hyp Ref Expression
0 czeta classζ
1 vf setvarf
2 cc class
3 c1 class1
4 3 csn class1
5 2 4 cdif class1
6 ccncf classcn
7 5 2 6 co class1cn
8 vs setvars
9 cmin class
10 c2 class2
11 ccxp classc
12 8 cv setvars
13 3 12 9 co class1s
14 10 13 11 co class21s
15 3 14 9 co class121s
16 cmul class×
17 1 cv setvarf
18 12 17 cfv classfs
19 15 18 16 co class121sfs
20 vn setvarn
21 cn0 class0
22 vk setvark
23 cc0 class0
24 cfz class
25 20 cv setvarn
26 23 25 24 co class0n
27 3 cneg class-1
28 cexp class^
29 22 cv setvark
30 27 29 28 co class1k
31 cbc class(..)
32 25 29 31 co class(nk)
33 30 32 16 co class1k(nk)
34 caddc class+
35 29 3 34 co classk+1
36 35 12 11 co classk+1s
37 33 36 16 co class1k(nk)k+1s
38 26 37 22 csu classk=0n1k(nk)k+1s
39 cdiv class÷
40 25 3 34 co classn+1
41 10 40 28 co class2n+1
42 38 41 39 co classk=0n1k(nk)k+1s2n+1
43 21 42 20 csu classn0k=0n1k(nk)k+1s2n+1
44 19 43 wceq wff121sfs=n0k=0n1k(nk)k+1s2n+1
45 44 8 5 wral wffs1121sfs=n0k=0n1k(nk)k+1s2n+1
46 45 1 7 crio classιf1cn|s1121sfs=n0k=0n1k(nk)k+1s2n+1
47 0 46 wceq wffζ=ιf1cn|s1121sfs=n0k=0n1k(nk)k+1s2n+1