Metamath Proof Explorer


Definition df-zeta

Description: Define the Riemann zeta function. This definition uses a series expansion of the alternating zeta function ~? zetaalt that is convergent everywhere except 1 , but going from the alternating zeta function to the regular zeta function requires dividing by 1 - 2 ^ ( 1 - s ) , which has zeroes other than 1 . To extract the correct value of the zeta function at these points, we extend the divided alternating zeta function by continuity. (Contributed by Mario Carneiro, 18-Jul-2014)

Ref Expression
Assertion df-zeta ζ = ι f 1 cn | s 1 1 2 1 s f s = n 0 k = 0 n 1 k ( n k) k + 1 s 2 n + 1

Detailed syntax breakdown

Step Hyp Ref Expression
0 czeta class ζ
1 vf setvar f
2 cc class
3 c1 class 1
4 3 csn class 1
5 2 4 cdif class 1
6 ccncf class cn
7 5 2 6 co class 1 cn
8 vs setvar s
9 cmin class
10 c2 class 2
11 ccxp class c
12 8 cv setvar s
13 3 12 9 co class 1 s
14 10 13 11 co class 2 1 s
15 3 14 9 co class 1 2 1 s
16 cmul class ×
17 1 cv setvar f
18 12 17 cfv class f s
19 15 18 16 co class 1 2 1 s f s
20 vn setvar n
21 cn0 class 0
22 vk setvar k
23 cc0 class 0
24 cfz class
25 20 cv setvar n
26 23 25 24 co class 0 n
27 3 cneg class -1
28 cexp class ^
29 22 cv setvar k
30 27 29 28 co class 1 k
31 cbc class ( . .)
32 25 29 31 co class ( n k)
33 30 32 16 co class 1 k ( n k)
34 caddc class +
35 29 3 34 co class k + 1
36 35 12 11 co class k + 1 s
37 33 36 16 co class 1 k ( n k) k + 1 s
38 26 37 22 csu class k = 0 n 1 k ( n k) k + 1 s
39 cdiv class ÷
40 25 3 34 co class n + 1
41 10 40 28 co class 2 n + 1
42 38 41 39 co class k = 0 n 1 k ( n k) k + 1 s 2 n + 1
43 21 42 20 csu class n 0 k = 0 n 1 k ( n k) k + 1 s 2 n + 1
44 19 43 wceq wff 1 2 1 s f s = n 0 k = 0 n 1 k ( n k) k + 1 s 2 n + 1
45 44 8 5 wral wff s 1 1 2 1 s f s = n 0 k = 0 n 1 k ( n k) k + 1 s 2 n + 1
46 45 1 7 crio class ι f 1 cn | s 1 1 2 1 s f s = n 0 k = 0 n 1 k ( n k) k + 1 s 2 n + 1
47 0 46 wceq wff ζ = ι f 1 cn | s 1 1 2 1 s f s = n 0 k = 0 n 1 k ( n k) k + 1 s 2 n + 1