Metamath Proof Explorer


Theorem dfac12k

Description: Equivalence of dfac12 and dfac12a , without using Regularity. (Contributed by Mario Carneiro, 21-May-2015)

Ref Expression
Assertion dfac12k xOn𝒫xdomcardyOn𝒫ydomcard

Proof

Step Hyp Ref Expression
1 alephon yOn
2 pweq x=y𝒫x=𝒫y
3 2 eleq1d x=y𝒫xdomcard𝒫ydomcard
4 3 rspcv yOnxOn𝒫xdomcard𝒫ydomcard
5 1 4 ax-mp xOn𝒫xdomcard𝒫ydomcard
6 5 ralrimivw xOn𝒫xdomcardyOn𝒫ydomcard
7 omelon ωOn
8 cardon cardxOn
9 ontri1 ωOncardxOnωcardx¬cardxω
10 7 8 9 mp2an ωcardx¬cardxω
11 cardidm cardcardx=cardx
12 cardalephex ωcardxcardcardx=cardxyOncardx=y
13 11 12 mpbii ωcardxyOncardx=y
14 r19.29 yOn𝒫ydomcardyOncardx=yyOn𝒫ydomcardcardx=y
15 pweq cardx=y𝒫cardx=𝒫y
16 15 eleq1d cardx=y𝒫cardxdomcard𝒫ydomcard
17 16 biimparc 𝒫ydomcardcardx=y𝒫cardxdomcard
18 17 rexlimivw yOn𝒫ydomcardcardx=y𝒫cardxdomcard
19 14 18 syl yOn𝒫ydomcardyOncardx=y𝒫cardxdomcard
20 19 ex yOn𝒫ydomcardyOncardx=y𝒫cardxdomcard
21 13 20 syl5 yOn𝒫ydomcardωcardx𝒫cardxdomcard
22 10 21 biimtrrid yOn𝒫ydomcard¬cardxω𝒫cardxdomcard
23 nnfi cardxωcardxFin
24 pwfi cardxFin𝒫cardxFin
25 23 24 sylib cardxω𝒫cardxFin
26 finnum 𝒫cardxFin𝒫cardxdomcard
27 25 26 syl cardxω𝒫cardxdomcard
28 22 27 pm2.61d2 yOn𝒫ydomcard𝒫cardxdomcard
29 oncardid xOncardxx
30 pwen cardxx𝒫cardx𝒫x
31 ennum 𝒫cardx𝒫x𝒫cardxdomcard𝒫xdomcard
32 29 30 31 3syl xOn𝒫cardxdomcard𝒫xdomcard
33 28 32 syl5ibcom yOn𝒫ydomcardxOn𝒫xdomcard
34 33 ralrimiv yOn𝒫ydomcardxOn𝒫xdomcard
35 6 34 impbii xOn𝒫xdomcardyOn𝒫ydomcard