Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Scott Fenton
Quantifier-free definitions
dfbigcup2
Next ⟩
fobigcup
Metamath Proof Explorer
Ascii
Unicode
Theorem
dfbigcup2
Description:
Bigcup
using maps-to notation.
(Contributed by
Scott Fenton
, 16-Apr-2012)
Ref
Expression
Assertion
dfbigcup2
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
=
x
∈
V
⟼
⋃
x
Proof
Step
Hyp
Ref
Expression
1
relbigcup
⊢
Rel
⁡
𝖡𝗂𝗀𝖼𝗎𝗉
2
mptrel
⊢
Rel
⁡
x
∈
V
⟼
⋃
x
3
eqcom
⊢
⋃
y
=
z
↔
z
=
⋃
y
4
vex
⊢
z
∈
V
5
4
brbigcup
⊢
y
𝖡𝗂𝗀𝖼𝗎𝗉
z
↔
⋃
y
=
z
6
vex
⊢
y
∈
V
7
eleq1w
⊢
x
=
y
→
x
∈
V
↔
y
∈
V
8
unieq
⊢
x
=
y
→
⋃
x
=
⋃
y
9
8
eqeq2d
⊢
x
=
y
→
t
=
⋃
x
↔
t
=
⋃
y
10
7
9
anbi12d
⊢
x
=
y
→
x
∈
V
∧
t
=
⋃
x
↔
y
∈
V
∧
t
=
⋃
y
11
6
biantrur
⊢
t
=
⋃
y
↔
y
∈
V
∧
t
=
⋃
y
12
10
11
bitr4di
⊢
x
=
y
→
x
∈
V
∧
t
=
⋃
x
↔
t
=
⋃
y
13
eqeq1
⊢
t
=
z
→
t
=
⋃
y
↔
z
=
⋃
y
14
df-mpt
⊢
x
∈
V
⟼
⋃
x
=
x
t
|
x
∈
V
∧
t
=
⋃
x
15
6
4
12
13
14
brab
⊢
y
x
∈
V
⟼
⋃
x
z
↔
z
=
⋃
y
16
3
5
15
3bitr4i
⊢
y
𝖡𝗂𝗀𝖼𝗎𝗉
z
↔
y
x
∈
V
⟼
⋃
x
z
17
1
2
16
eqbrriv
⊢
𝖡𝗂𝗀𝖼𝗎𝗉
=
x
∈
V
⟼
⋃
x