Metamath Proof Explorer


Theorem dfbigcup2

Description: Bigcup using maps-to notation. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion dfbigcup2 𝖡𝗂𝗀𝖼𝗎𝗉 = x V x

Proof

Step Hyp Ref Expression
1 relbigcup Rel 𝖡𝗂𝗀𝖼𝗎𝗉
2 mptrel Rel x V x
3 eqcom y = z z = y
4 vex z V
5 4 brbigcup y 𝖡𝗂𝗀𝖼𝗎𝗉 z y = z
6 vex y V
7 eleq1w x = y x V y V
8 unieq x = y x = y
9 8 eqeq2d x = y t = x t = y
10 7 9 anbi12d x = y x V t = x y V t = y
11 6 biantrur t = y y V t = y
12 10 11 bitr4di x = y x V t = x t = y
13 eqeq1 t = z t = y z = y
14 df-mpt x V x = x t | x V t = x
15 6 4 12 13 14 brab y x V x z z = y
16 3 5 15 3bitr4i y 𝖡𝗂𝗀𝖼𝗎𝗉 z y x V x z
17 1 2 16 eqbrriv 𝖡𝗂𝗀𝖼𝗎𝗉 = x V x