Metamath Proof Explorer


Theorem dfcnvrefrels2

Description: Alternate definition of the class of converse reflexive relations. See the comment of dfrefrels2 . (Contributed by Peter Mazsa, 21-Jul-2021)

Ref Expression
Assertion dfcnvrefrels2 CnvRefRels=rRels|rIdomr×ranr

Proof

Step Hyp Ref Expression
1 df-cnvrefrels CnvRefRels=CnvRefsRels
2 df-cnvrefs CnvRefs=r|Idomr×ranrS-1rdomr×ranr
3 dmexg rVdomrV
4 3 elv domrV
5 rnexg rVranrV
6 5 elv ranrV
7 4 6 xpex domr×ranrV
8 inex2g domr×ranrVIdomr×ranrV
9 brcnvssr Idomr×ranrVIdomr×ranrS-1rdomr×ranrrdomr×ranrIdomr×ranr
10 7 8 9 mp2b Idomr×ranrS-1rdomr×ranrrdomr×ranrIdomr×ranr
11 elrels6 rVrRelsrdomr×ranr=r
12 11 elv rRelsrdomr×ranr=r
13 12 biimpi rRelsrdomr×ranr=r
14 13 sseq1d rRelsrdomr×ranrIdomr×ranrrIdomr×ranr
15 10 14 bitrid rRelsIdomr×ranrS-1rdomr×ranrrIdomr×ranr
16 1 2 15 abeqinbi CnvRefRels=rRels|rIdomr×ranr