Metamath Proof Explorer


Theorem dff13f

Description: A one-to-one function in terms of function values. Compare Theorem 4.8(iv) of Monk1 p. 43. (Contributed by NM, 31-Jul-2003)

Ref Expression
Hypotheses dff13f.1 _xF
dff13f.2 _yF
Assertion dff13f F:A1-1BF:ABxAyAFx=Fyx=y

Proof

Step Hyp Ref Expression
1 dff13f.1 _xF
2 dff13f.2 _yF
3 dff13 F:A1-1BF:ABwAvAFw=Fvw=v
4 nfcv _yw
5 2 4 nffv _yFw
6 nfcv _yv
7 2 6 nffv _yFv
8 5 7 nfeq yFw=Fv
9 nfv yw=v
10 8 9 nfim yFw=Fvw=v
11 nfv vFw=Fyw=y
12 fveq2 v=yFv=Fy
13 12 eqeq2d v=yFw=FvFw=Fy
14 equequ2 v=yw=vw=y
15 13 14 imbi12d v=yFw=Fvw=vFw=Fyw=y
16 10 11 15 cbvralw vAFw=Fvw=vyAFw=Fyw=y
17 16 ralbii wAvAFw=Fvw=vwAyAFw=Fyw=y
18 nfcv _xA
19 nfcv _xw
20 1 19 nffv _xFw
21 nfcv _xy
22 1 21 nffv _xFy
23 20 22 nfeq xFw=Fy
24 nfv xw=y
25 23 24 nfim xFw=Fyw=y
26 18 25 nfralw xyAFw=Fyw=y
27 nfv wyAFx=Fyx=y
28 fveqeq2 w=xFw=FyFx=Fy
29 equequ1 w=xw=yx=y
30 28 29 imbi12d w=xFw=Fyw=yFx=Fyx=y
31 30 ralbidv w=xyAFw=Fyw=yyAFx=Fyx=y
32 26 27 31 cbvralw wAyAFw=Fyw=yxAyAFx=Fyx=y
33 17 32 bitri wAvAFw=Fvw=vxAyAFx=Fyx=y
34 33 anbi2i F:ABwAvAFw=Fvw=vF:ABxAyAFx=Fyx=y
35 3 34 bitri F:A1-1BF:ABxAyAFx=Fyx=y