Metamath Proof Explorer


Theorem dffix2

Description: The fixpoints of a class in terms of its range. (Contributed by Scott Fenton, 16-Apr-2012)

Ref Expression
Assertion dffix2 𝖥𝗂𝗑A=ranAI

Proof

Step Hyp Ref Expression
1 vex xV
2 1 elfix x𝖥𝗂𝗑AxAx
3 1 elrn xranAIyyAIx
4 brin yAIxyAxyIx
5 ancom yAxyIxyIxyAx
6 1 ideq yIxy=x
7 6 anbi1i yIxyAxy=xyAx
8 4 5 7 3bitri yAIxy=xyAx
9 8 exbii yyAIxyy=xyAx
10 breq1 y=xyAxxAx
11 10 equsexvw yy=xyAxxAx
12 3 9 11 3bitri xranAIxAx
13 2 12 bitr4i x𝖥𝗂𝗑AxranAI
14 13 eqriv 𝖥𝗂𝗑A=ranAI