Metamath Proof Explorer


Theorem dffun2

Description: Alternate definition of a function. (Contributed by NM, 29-Dec-1996) Avoid ax-10 , ax-12 . (Revised by SN, 19-Dec-2024) Avoid ax-11 . (Revised by BTernaryTau, 29-Dec-2024)

Ref Expression
Assertion dffun2 FunARelAxyzxAyxAzy=z

Proof

Step Hyp Ref Expression
1 df-fun FunARelAAA-1I
2 cotrg AA-1IyxzyA-1xxAzyIz
3 breq1 y=wyA-1xwA-1x
4 3 anbi1d y=wyA-1xxAzwA-1xxAz
5 breq1 y=wyIzwIz
6 4 5 imbi12d y=wyA-1xxAzyIzwA-1xxAzwIz
7 6 albidv y=wzyA-1xxAzyIzzwA-1xxAzwIz
8 breq2 x=wyA-1xyA-1w
9 breq1 x=wxAzwAz
10 8 9 anbi12d x=wyA-1xxAzyA-1wwAz
11 10 imbi1d x=wyA-1xxAzyIzyA-1wwAzyIz
12 11 albidv x=wzyA-1xxAzyIzzyA-1wwAzyIz
13 7 12 alcomw yxzyA-1xxAzyIzxyzyA-1xxAzyIz
14 vex yV
15 vex xV
16 14 15 brcnv yA-1xxAy
17 16 anbi1i yA-1xxAzxAyxAz
18 vex zV
19 18 ideq yIzy=z
20 17 19 imbi12i yA-1xxAzyIzxAyxAzy=z
21 20 3albii xyzyA-1xxAzyIzxyzxAyxAzy=z
22 13 21 bitri yxzyA-1xxAzyIzxyzxAyxAzy=z
23 2 22 bitri AA-1IxyzxAyxAzy=z
24 23 anbi2i RelAAA-1IRelAxyzxAyxAzy=z
25 1 24 bitri FunARelAxyzxAyxAzy=z