Metamath Proof Explorer


Theorem dfiun2g

Description: Alternate definition of indexed union when B is a set. Definition 15(a) of Suppes p. 44. (Contributed by NM, 23-Mar-2006) (Proof shortened by Andrew Salmon, 25-Jul-2011) (Proof shortened by Rohan Ridenour, 11-Aug-2023) Avoid ax-10 , ax-12 . (Revised by SN, 11-Dec-2024)

Ref Expression
Assertion dfiun2g xABCxAB=y|xAy=B

Proof

Step Hyp Ref Expression
1 df-iun xAB=z|xAzB
2 elisset BCzz=B
3 eleq2 z=BwzwB
4 3 pm5.32ri wzz=BwBz=B
5 4 simplbi2 wBz=Bwzz=B
6 5 eximdv wBzz=Bzwzz=B
7 2 6 syl5com BCwBzwzz=B
8 7 ralimi xABCxAwBzwzz=B
9 rexim xAwBzwzz=BxAwBxAzwzz=B
10 8 9 syl xABCxAwBxAzwzz=B
11 rexcom4 xAzwzz=BzxAwzz=B
12 r19.42v xAwzz=BwzxAz=B
13 12 exbii zxAwzz=BzwzxAz=B
14 11 13 bitri xAzwzz=BzwzxAz=B
15 10 14 imbitrdi xABCxAwBzwzxAz=B
16 3 biimpac wzz=BwB
17 16 reximi xAwzz=BxAwB
18 12 17 sylbir wzxAz=BxAwB
19 18 exlimiv zwzxAz=BxAwB
20 15 19 impbid1 xABCxAwBzwzxAz=B
21 vex wV
22 eleq1w z=wzBwB
23 22 rexbidv z=wxAzBxAwB
24 21 23 elab wz|xAzBxAwB
25 eluni wy|xAy=Bzwzzy|xAy=B
26 vex zV
27 eqeq1 y=zy=Bz=B
28 27 rexbidv y=zxAy=BxAz=B
29 26 28 elab zy|xAy=BxAz=B
30 29 anbi2i wzzy|xAy=BwzxAz=B
31 30 exbii zwzzy|xAy=BzwzxAz=B
32 25 31 bitri wy|xAy=BzwzxAz=B
33 20 24 32 3bitr4g xABCwz|xAzBwy|xAy=B
34 33 eqrdv xABCz|xAzB=y|xAy=B
35 1 34 eqtrid xABCxAB=y|xAy=B