Metamath Proof Explorer


Theorem dfodd4

Description: Alternate definition for odd numbers. (Contributed by AV, 18-Jun-2020)

Ref Expression
Assertion dfodd4 Odd=z|zmod2=1

Proof

Step Hyp Ref Expression
1 dfodd2 Odd=z|z12
2 peano2zm zz1
3 2 zred zz1
4 2rp 2+
5 mod0 z12+z1mod2=0z12
6 3 4 5 sylancl zz1mod2=0z12
7 zre zz
8 2re 2
9 8 a1i z2
10 1lt2 1<2
11 10 a1i z1<2
12 m1mod0mod1 z21<2z1mod2=0zmod2=1
13 7 9 11 12 syl3anc zz1mod2=0zmod2=1
14 6 13 bitr3d zz12zmod2=1
15 14 rabbiia z|z12=z|zmod2=1
16 1 15 eqtri Odd=z|zmod2=1