Metamath Proof Explorer


Theorem dfom2

Description: An alternate definition of the set of natural numbers _om . Definition 7.28 of TakeutiZaring p. 42, who use the symbol K_I for the restricted class abstraction of non-limit ordinal numbers (see nlimon ). (Contributed by NM, 1-Nov-2004)

Ref Expression
Assertion dfom2 ω=xOn|sucxyOn|¬Limy

Proof

Step Hyp Ref Expression
1 df-om ω=xOn|zLimzxz
2 vex zV
3 limelon zVLimzzOn
4 2 3 mpan LimzzOn
5 4 pm4.71ri LimzzOnLimz
6 5 imbi1i LimzxzzOnLimzxz
7 impexp zOnLimzxzzOnLimzxz
8 con34b Limzxz¬xz¬Limz
9 ibar zOn¬LimzzOn¬Limz
10 9 imbi2d zOn¬xz¬Limz¬xzzOn¬Limz
11 8 10 bitrid zOnLimzxz¬xzzOn¬Limz
12 11 pm5.74i zOnLimzxzzOn¬xzzOn¬Limz
13 6 7 12 3bitri LimzxzzOn¬xzzOn¬Limz
14 onsssuc zOnxOnzxzsucx
15 ontri1 zOnxOnzx¬xz
16 14 15 bitr3d zOnxOnzsucx¬xz
17 16 ancoms xOnzOnzsucx¬xz
18 limeq y=zLimyLimz
19 18 notbid y=z¬Limy¬Limz
20 19 elrab zyOn|¬LimyzOn¬Limz
21 20 a1i xOnzOnzyOn|¬LimyzOn¬Limz
22 17 21 imbi12d xOnzOnzsucxzyOn|¬Limy¬xzzOn¬Limz
23 22 pm5.74da xOnzOnzsucxzyOn|¬LimyzOn¬xzzOn¬Limz
24 13 23 bitr4id xOnLimzxzzOnzsucxzyOn|¬Limy
25 impexp zOnzsucxzyOn|¬LimyzOnzsucxzyOn|¬Limy
26 simpr zOnzsucxzsucx
27 onsuc xOnsucxOn
28 onelon sucxOnzsucxzOn
29 28 ex sucxOnzsucxzOn
30 27 29 syl xOnzsucxzOn
31 30 ancrd xOnzsucxzOnzsucx
32 26 31 impbid2 xOnzOnzsucxzsucx
33 32 imbi1d xOnzOnzsucxzyOn|¬LimyzsucxzyOn|¬Limy
34 25 33 bitr3id xOnzOnzsucxzyOn|¬LimyzsucxzyOn|¬Limy
35 24 34 bitrd xOnLimzxzzsucxzyOn|¬Limy
36 35 albidv xOnzLimzxzzzsucxzyOn|¬Limy
37 dfss2 sucxyOn|¬LimyzzsucxzyOn|¬Limy
38 36 37 bitr4di xOnzLimzxzsucxyOn|¬Limy
39 38 rabbiia xOn|zLimzxz=xOn|sucxyOn|¬Limy
40 1 39 eqtri ω=xOn|sucxyOn|¬Limy