Metamath Proof Explorer


Theorem dfoprab4f

Description: Operation class abstraction expressed without existential quantifiers. (Contributed by NM, 20-Dec-2008) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012) (Revised by Mario Carneiro, 31-Aug-2015)

Ref Expression
Hypotheses dfoprab4f.x xφ
dfoprab4f.y yφ
dfoprab4f.1 w=xyφψ
Assertion dfoprab4f wz|wA×Bφ=xyz|xAyBψ

Proof

Step Hyp Ref Expression
1 dfoprab4f.x xφ
2 dfoprab4f.y yφ
3 dfoprab4f.1 w=xyφψ
4 nfv xw=tu
5 nfs1v xtxuyψ
6 1 5 nfbi xφtxuyψ
7 4 6 nfim xw=tuφtxuyψ
8 opeq1 x=txu=tu
9 8 eqeq2d x=tw=xuw=tu
10 sbequ12 x=tuyψtxuyψ
11 10 bibi2d x=tφuyψφtxuyψ
12 9 11 imbi12d x=tw=xuφuyψw=tuφtxuyψ
13 nfv yw=xu
14 nfs1v yuyψ
15 2 14 nfbi yφuyψ
16 13 15 nfim yw=xuφuyψ
17 opeq2 y=uxy=xu
18 17 eqeq2d y=uw=xyw=xu
19 sbequ12 y=uψuyψ
20 19 bibi2d y=uφψφuyψ
21 18 20 imbi12d y=uw=xyφψw=xuφuyψ
22 16 21 3 chvarfv w=xuφuyψ
23 7 12 22 chvarfv w=tuφtxuyψ
24 23 dfoprab4 wz|wA×Bφ=tuz|tAuBtxuyψ
25 nfv txAyBψ
26 nfv uxAyBψ
27 nfv xtAuB
28 27 5 nfan xtAuBtxuyψ
29 nfv ytAuB
30 14 nfsbv ytxuyψ
31 29 30 nfan ytAuBtxuyψ
32 eleq1w x=txAtA
33 eleq1w y=uyBuB
34 32 33 bi2anan9 x=ty=uxAyBtAuB
35 19 10 sylan9bbr x=ty=uψtxuyψ
36 34 35 anbi12d x=ty=uxAyBψtAuBtxuyψ
37 25 26 28 31 36 cbvoprab12 xyz|xAyBψ=tuz|tAuBtxuyψ
38 24 37 eqtr4i wz|wA×Bφ=xyz|xAyBψ