Metamath Proof Explorer


Theorem dford3

Description: Ordinals are precisely the hereditarily transitive classes. Definition 1.2 of Schloeder p. 1. (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford3 OrdNTrNxNTrx

Proof

Step Hyp Ref Expression
1 ordtr OrdNTrN
2 ordelord OrdNxNOrdx
3 ordtr OrdxTrx
4 2 3 syl OrdNxNTrx
5 4 ralrimiva OrdNxNTrx
6 1 5 jca OrdNTrNxNTrx
7 simpl TrNxNTrxTrN
8 dford3lem1 TrNxNTrxaNTraxaTrx
9 dford3lem2 TraxaTrxaOn
10 9 ralimi aNTraxaTrxaNaOn
11 8 10 syl TrNxNTrxaNaOn
12 dfss3 NOnaNaOn
13 11 12 sylibr TrNxNTrxNOn
14 ordon OrdOn
15 14 a1i TrNxNTrxOrdOn
16 trssord TrNNOnOrdOnOrdN
17 7 13 15 16 syl3anc TrNxNTrxOrdN
18 6 17 impbii OrdNTrNxNTrx