Metamath Proof Explorer


Theorem dford3lem1

Description: Lemma for dford3 . (Contributed by Stefan O'Rear, 28-Oct-2014)

Ref Expression
Assertion dford3lem1 TrNyNTrybNTrbybTry

Proof

Step Hyp Ref Expression
1 treq y=bTryTrb
2 1 cbvralvw yNTrybNTrb
3 2 biimpi yNTrybNTrb
4 3 adantl TrNyNTrybNTrb
5 trss TrNbNbN
6 ssralv bNyNTryybTry
7 5 6 syl6 TrNbNyNTryybTry
8 7 com23 TrNyNTrybNybTry
9 8 imp TrNyNTrybNybTry
10 9 ralrimiv TrNyNTrybNybTry
11 r19.26 bNTrbybTrybNTrbbNybTry
12 4 10 11 sylanbrc TrNyNTrybNTrbybTry