Metamath Proof Explorer


Theorem dfrdg3

Description: Generalization of dfrdg2 to remove sethood requirement. (Contributed by Scott Fenton, 27-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion dfrdg3 recFI=f|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy

Proof

Step Hyp Ref Expression
1 dfrdg2 IVrecFI=f|xOnfFnxyxfy=ify=IifLimyfyFfy
2 iftrue IVifIVI=I
3 2 ifeq1d IVify=ifIVIifLimyfyFfy=ify=IifLimyfyFfy
4 3 eqeq2d IVfy=ify=ifIVIifLimyfyFfyfy=ify=IifLimyfyFfy
5 4 ralbidv IVyxfy=ify=ifIVIifLimyfyFfyyxfy=ify=IifLimyfyFfy
6 5 anbi2d IVfFnxyxfy=ify=ifIVIifLimyfyFfyfFnxyxfy=ify=IifLimyfyFfy
7 6 rexbidv IVxOnfFnxyxfy=ify=ifIVIifLimyfyFfyxOnfFnxyxfy=ify=IifLimyfyFfy
8 7 abbidv IVf|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy=f|xOnfFnxyxfy=ify=IifLimyfyFfy
9 8 unieqd IVf|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy=f|xOnfFnxyxfy=ify=IifLimyfyFfy
10 1 9 eqtr4d IVrecFI=f|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy
11 0ex V
12 dfrdg2 VrecF=f|xOnfFnxyxfy=ify=ifLimyfyFfy
13 11 12 ax-mp recF=f|xOnfFnxyxfy=ify=ifLimyfyFfy
14 rdgprc ¬IVrecFI=recF
15 iffalse ¬IVifIVI=
16 15 ifeq1d ¬IVify=ifIVIifLimyfyFfy=ify=ifLimyfyFfy
17 16 eqeq2d ¬IVfy=ify=ifIVIifLimyfyFfyfy=ify=ifLimyfyFfy
18 17 ralbidv ¬IVyxfy=ify=ifIVIifLimyfyFfyyxfy=ify=ifLimyfyFfy
19 18 anbi2d ¬IVfFnxyxfy=ify=ifIVIifLimyfyFfyfFnxyxfy=ify=ifLimyfyFfy
20 19 rexbidv ¬IVxOnfFnxyxfy=ify=ifIVIifLimyfyFfyxOnfFnxyxfy=ify=ifLimyfyFfy
21 20 abbidv ¬IVf|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy=f|xOnfFnxyxfy=ify=ifLimyfyFfy
22 21 unieqd ¬IVf|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy=f|xOnfFnxyxfy=ify=ifLimyfyFfy
23 13 14 22 3eqtr4a ¬IVrecFI=f|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy
24 10 23 pm2.61i recFI=f|xOnfFnxyxfy=ify=ifIVIifLimyfyFfy