Description: The value of the recursive definition generator when I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | rdgprc | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq2 | |
|
2 | fveq2 | |
|
3 | 1 2 | eqeq12d | |
4 | 3 | imbi2d | |
5 | fveq2 | |
|
6 | fveq2 | |
|
7 | 5 6 | eqeq12d | |
8 | 7 | imbi2d | |
9 | fveq2 | |
|
10 | fveq2 | |
|
11 | 9 10 | eqeq12d | |
12 | 11 | imbi2d | |
13 | fveq2 | |
|
14 | fveq2 | |
|
15 | 13 14 | eqeq12d | |
16 | 15 | imbi2d | |
17 | rdgprc0 | |
|
18 | 0ex | |
|
19 | 18 | rdg0 | |
20 | 17 19 | eqtr4di | |
21 | fveq2 | |
|
22 | rdgsuc | |
|
23 | rdgsuc | |
|
24 | 22 23 | eqeq12d | |
25 | 21 24 | imbitrrid | |
26 | 25 | imim2d | |
27 | r19.21v | |
|
28 | limord | |
|
29 | ordsson | |
|
30 | rdgfnon | |
|
31 | rdgfnon | |
|
32 | fvreseq | |
|
33 | 30 31 32 | mpanl12 | |
34 | 28 29 33 | 3syl | |
35 | rneq | |
|
36 | df-ima | |
|
37 | df-ima | |
|
38 | 35 36 37 | 3eqtr4g | |
39 | 38 | unieqd | |
40 | vex | |
|
41 | rdglim | |
|
42 | rdglim | |
|
43 | 41 42 | eqeq12d | |
44 | 40 43 | mpan | |
45 | 39 44 | imbitrrid | |
46 | 34 45 | sylbird | |
47 | 46 | imim2d | |
48 | 27 47 | biimtrid | |
49 | 4 8 12 16 20 26 48 | tfinds | |
50 | 49 | com12 | |
51 | 50 | ralrimiv | |
52 | eqfnfv | |
|
53 | 30 31 52 | mp2an | |
54 | 51 53 | sylibr | |