Metamath Proof Explorer


Theorem rdgprc

Description: The value of the recursive definition generator when I is a proper class. (Contributed by Scott Fenton, 26-Mar-2014) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion rdgprc ¬IVrecFI=recF

Proof

Step Hyp Ref Expression
1 fveq2 z=recFIz=recFI
2 fveq2 z=recFz=recF
3 1 2 eqeq12d z=recFIz=recFzrecFI=recF
4 3 imbi2d z=¬IVrecFIz=recFz¬IVrecFI=recF
5 fveq2 z=yrecFIz=recFIy
6 fveq2 z=yrecFz=recFy
7 5 6 eqeq12d z=yrecFIz=recFzrecFIy=recFy
8 7 imbi2d z=y¬IVrecFIz=recFz¬IVrecFIy=recFy
9 fveq2 z=sucyrecFIz=recFIsucy
10 fveq2 z=sucyrecFz=recFsucy
11 9 10 eqeq12d z=sucyrecFIz=recFzrecFIsucy=recFsucy
12 11 imbi2d z=sucy¬IVrecFIz=recFz¬IVrecFIsucy=recFsucy
13 fveq2 z=xrecFIz=recFIx
14 fveq2 z=xrecFz=recFx
15 13 14 eqeq12d z=xrecFIz=recFzrecFIx=recFx
16 15 imbi2d z=x¬IVrecFIz=recFz¬IVrecFIx=recFx
17 rdgprc0 ¬IVrecFI=
18 0ex V
19 18 rdg0 recF=
20 17 19 eqtr4di ¬IVrecFI=recF
21 fveq2 recFIy=recFyFrecFIy=FrecFy
22 rdgsuc yOnrecFIsucy=FrecFIy
23 rdgsuc yOnrecFsucy=FrecFy
24 22 23 eqeq12d yOnrecFIsucy=recFsucyFrecFIy=FrecFy
25 21 24 imbitrrid yOnrecFIy=recFyrecFIsucy=recFsucy
26 25 imim2d yOn¬IVrecFIy=recFy¬IVrecFIsucy=recFsucy
27 r19.21v yz¬IVrecFIy=recFy¬IVyzrecFIy=recFy
28 limord LimzOrdz
29 ordsson OrdzzOn
30 rdgfnon recFIFnOn
31 rdgfnon recFFnOn
32 fvreseq recFIFnOnrecFFnOnzOnrecFIz=recFzyzrecFIy=recFy
33 30 31 32 mpanl12 zOnrecFIz=recFzyzrecFIy=recFy
34 28 29 33 3syl LimzrecFIz=recFzyzrecFIy=recFy
35 rneq recFIz=recFzranrecFIz=ranrecFz
36 df-ima recFIz=ranrecFIz
37 df-ima recFz=ranrecFz
38 35 36 37 3eqtr4g recFIz=recFzrecFIz=recFz
39 38 unieqd recFIz=recFzrecFIz=recFz
40 vex zV
41 rdglim zVLimzrecFIz=recFIz
42 rdglim zVLimzrecFz=recFz
43 41 42 eqeq12d zVLimzrecFIz=recFzrecFIz=recFz
44 40 43 mpan LimzrecFIz=recFzrecFIz=recFz
45 39 44 imbitrrid LimzrecFIz=recFzrecFIz=recFz
46 34 45 sylbird LimzyzrecFIy=recFyrecFIz=recFz
47 46 imim2d Limz¬IVyzrecFIy=recFy¬IVrecFIz=recFz
48 27 47 biimtrid Limzyz¬IVrecFIy=recFy¬IVrecFIz=recFz
49 4 8 12 16 20 26 48 tfinds xOn¬IVrecFIx=recFx
50 49 com12 ¬IVxOnrecFIx=recFx
51 50 ralrimiv ¬IVxOnrecFIx=recFx
52 eqfnfv recFIFnOnrecFFnOnrecFI=recFxOnrecFIx=recFx
53 30 31 52 mp2an recFI=recFxOnrecFIx=recFx
54 51 53 sylibr ¬IVrecFI=recF