| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fveq2 | ⊢ ( 𝑧  =  ∅  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ ) ) | 
						
							| 2 |  | fveq2 | ⊢ ( 𝑧  =  ∅  →  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ ∅ ) ) | 
						
							| 3 | 1 2 | eqeq12d | ⊢ ( 𝑧  =  ∅  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  ↔  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ( rec ( 𝐹 ,  ∅ ) ‘ ∅ ) ) ) | 
						
							| 4 | 3 | imbi2d | ⊢ ( 𝑧  =  ∅  →  ( ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) )  ↔  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ( rec ( 𝐹 ,  ∅ ) ‘ ∅ ) ) ) ) | 
						
							| 5 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 ) ) | 
						
							| 6 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) | 
						
							| 7 | 5 6 | eqeq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  ↔  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 8 | 7 | imbi2d | ⊢ ( 𝑧  =  𝑦  →  ( ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) )  ↔  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝑧  =  suc  𝑦  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 ) ) | 
						
							| 10 |  | fveq2 | ⊢ ( 𝑧  =  suc  𝑦  →  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 ) ) | 
						
							| 11 | 9 10 | eqeq12d | ⊢ ( 𝑧  =  suc  𝑦  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  ↔  ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 ) ) ) | 
						
							| 12 | 11 | imbi2d | ⊢ ( 𝑧  =  suc  𝑦  →  ( ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) )  ↔  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 ) ) ) ) | 
						
							| 13 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 ) ) | 
						
							| 14 |  | fveq2 | ⊢ ( 𝑧  =  𝑥  →  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) | 
						
							| 15 | 13 14 | eqeq12d | ⊢ ( 𝑧  =  𝑥  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  ↔  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑧  =  𝑥  →  ( ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) )  ↔  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) ) ) | 
						
							| 17 |  | rdgprc0 | ⊢ ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ∅ ) | 
						
							| 18 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 19 | 18 | rdg0 | ⊢ ( rec ( 𝐹 ,  ∅ ) ‘ ∅ )  =  ∅ | 
						
							| 20 | 17 19 | eqtr4di | ⊢ ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ( rec ( 𝐹 ,  ∅ ) ‘ ∅ ) ) | 
						
							| 21 |  | fveq2 | ⊢ ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 )  →  ( 𝐹 ‘ ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 22 |  | rdgsuc | ⊢ ( 𝑦  ∈  On  →  ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 ) ) ) | 
						
							| 23 |  | rdgsuc | ⊢ ( 𝑦  ∈  On  →  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 24 | 22 23 | eqeq12d | ⊢ ( 𝑦  ∈  On  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 )  ↔  ( 𝐹 ‘ ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 ) )  =  ( 𝐹 ‘ ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) ) | 
						
							| 25 | 21 24 | imbitrrid | ⊢ ( 𝑦  ∈  On  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 )  →  ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 ) ) ) | 
						
							| 26 | 25 | imim2d | ⊢ ( 𝑦  ∈  On  →  ( ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) )  →  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ suc  𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ suc  𝑦 ) ) ) ) | 
						
							| 27 |  | r19.21v | ⊢ ( ∀ 𝑦  ∈  𝑧 ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) )  ↔  ( ¬  𝐼  ∈  V  →  ∀ 𝑦  ∈  𝑧 ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 28 |  | limord | ⊢ ( Lim  𝑧  →  Ord  𝑧 ) | 
						
							| 29 |  | ordsson | ⊢ ( Ord  𝑧  →  𝑧  ⊆  On ) | 
						
							| 30 |  | rdgfnon | ⊢ rec ( 𝐹 ,  𝐼 )  Fn  On | 
						
							| 31 |  | rdgfnon | ⊢ rec ( 𝐹 ,  ∅ )  Fn  On | 
						
							| 32 |  | fvreseq | ⊢ ( ( ( rec ( 𝐹 ,  𝐼 )  Fn  On  ∧  rec ( 𝐹 ,  ∅ )  Fn  On )  ∧  𝑧  ⊆  On )  →  ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  ↔  ∀ 𝑦  ∈  𝑧 ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 33 | 30 31 32 | mpanl12 | ⊢ ( 𝑧  ⊆  On  →  ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  ↔  ∀ 𝑦  ∈  𝑧 ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 34 | 28 29 33 | 3syl | ⊢ ( Lim  𝑧  →  ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  ↔  ∀ 𝑦  ∈  𝑧 ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) ) ) | 
						
							| 35 |  | rneq | ⊢ ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  →  ran  ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ran  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 ) ) | 
						
							| 36 |  | df-ima | ⊢ ( rec ( 𝐹 ,  𝐼 )  “  𝑧 )  =  ran  ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 ) | 
						
							| 37 |  | df-ima | ⊢ ( rec ( 𝐹 ,  ∅ )  “  𝑧 )  =  ran  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 ) | 
						
							| 38 | 35 36 37 | 3eqtr4g | ⊢ ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  →  ( rec ( 𝐹 ,  𝐼 )  “  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  “  𝑧 ) ) | 
						
							| 39 | 38 | unieqd | ⊢ ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  →  ∪  ( rec ( 𝐹 ,  𝐼 )  “  𝑧 )  =  ∪  ( rec ( 𝐹 ,  ∅ )  “  𝑧 ) ) | 
						
							| 40 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 41 |  | rdglim | ⊢ ( ( 𝑧  ∈  V  ∧  Lim  𝑧 )  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ∪  ( rec ( 𝐹 ,  𝐼 )  “  𝑧 ) ) | 
						
							| 42 |  | rdglim | ⊢ ( ( 𝑧  ∈  V  ∧  Lim  𝑧 )  →  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  =  ∪  ( rec ( 𝐹 ,  ∅ )  “  𝑧 ) ) | 
						
							| 43 | 41 42 | eqeq12d | ⊢ ( ( 𝑧  ∈  V  ∧  Lim  𝑧 )  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  ↔  ∪  ( rec ( 𝐹 ,  𝐼 )  “  𝑧 )  =  ∪  ( rec ( 𝐹 ,  ∅ )  “  𝑧 ) ) ) | 
						
							| 44 | 40 43 | mpan | ⊢ ( Lim  𝑧  →  ( ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 )  ↔  ∪  ( rec ( 𝐹 ,  𝐼 )  “  𝑧 )  =  ∪  ( rec ( 𝐹 ,  ∅ )  “  𝑧 ) ) ) | 
						
							| 45 | 39 44 | imbitrrid | ⊢ ( Lim  𝑧  →  ( ( rec ( 𝐹 ,  𝐼 )  ↾  𝑧 )  =  ( rec ( 𝐹 ,  ∅ )  ↾  𝑧 )  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) ) ) | 
						
							| 46 | 34 45 | sylbird | ⊢ ( Lim  𝑧  →  ( ∀ 𝑦  ∈  𝑧 ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 )  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) ) ) | 
						
							| 47 | 46 | imim2d | ⊢ ( Lim  𝑧  →  ( ( ¬  𝐼  ∈  V  →  ∀ 𝑦  ∈  𝑧 ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) )  →  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) ) ) ) | 
						
							| 48 | 27 47 | biimtrid | ⊢ ( Lim  𝑧  →  ( ∀ 𝑦  ∈  𝑧 ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑦 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑦 ) )  →  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑧 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑧 ) ) ) ) | 
						
							| 49 | 4 8 12 16 20 26 48 | tfinds | ⊢ ( 𝑥  ∈  On  →  ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) ) | 
						
							| 50 | 49 | com12 | ⊢ ( ¬  𝐼  ∈  V  →  ( 𝑥  ∈  On  →  ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) ) | 
						
							| 51 | 50 | ralrimiv | ⊢ ( ¬  𝐼  ∈  V  →  ∀ 𝑥  ∈  On ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) | 
						
							| 52 |  | eqfnfv | ⊢ ( ( rec ( 𝐹 ,  𝐼 )  Fn  On  ∧  rec ( 𝐹 ,  ∅ )  Fn  On )  →  ( rec ( 𝐹 ,  𝐼 )  =  rec ( 𝐹 ,  ∅ )  ↔  ∀ 𝑥  ∈  On ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) ) | 
						
							| 53 | 30 31 52 | mp2an | ⊢ ( rec ( 𝐹 ,  𝐼 )  =  rec ( 𝐹 ,  ∅ )  ↔  ∀ 𝑥  ∈  On ( rec ( 𝐹 ,  𝐼 ) ‘ 𝑥 )  =  ( rec ( 𝐹 ,  ∅ ) ‘ 𝑥 ) ) | 
						
							| 54 | 51 53 | sylibr | ⊢ ( ¬  𝐼  ∈  V  →  rec ( 𝐹 ,  𝐼 )  =  rec ( 𝐹 ,  ∅ ) ) |