Step |
Hyp |
Ref |
Expression |
1 |
|
rdgeq2 |
β’ ( π = πΌ β rec ( πΉ , π ) = rec ( πΉ , πΌ ) ) |
2 |
|
ifeq1 |
β’ ( π = πΌ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
3 |
2
|
eqeq2d |
β’ ( π = πΌ β ( ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) β ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
4 |
3
|
ralbidv |
β’ ( π = πΌ β ( β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) β β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
5 |
4
|
anbi2d |
β’ ( π = πΌ β ( ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) β ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) ) |
6 |
5
|
rexbidv |
β’ ( π = πΌ β ( β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) β β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) ) |
7 |
6
|
abbidv |
β’ ( π = πΌ β { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } = { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } ) |
8 |
7
|
unieqd |
β’ ( π = πΌ β βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } ) |
9 |
1 8
|
eqeq12d |
β’ ( π = πΌ β ( rec ( πΉ , π ) = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } β rec ( πΉ , πΌ ) = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } ) ) |
10 |
|
df-rdg |
β’ rec ( πΉ , π ) = recs ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) ) |
11 |
|
dfrecs3 |
β’ recs ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) ) = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) ) } |
12 |
|
vex |
β’ π β V |
13 |
12
|
resex |
β’ ( π βΎ π¦ ) β V |
14 |
|
eqeq1 |
β’ ( π = ( π βΎ π¦ ) β ( π = β
β ( π βΎ π¦ ) = β
) ) |
15 |
|
relres |
β’ Rel ( π βΎ π¦ ) |
16 |
|
reldm0 |
β’ ( Rel ( π βΎ π¦ ) β ( ( π βΎ π¦ ) = β
β dom ( π βΎ π¦ ) = β
) ) |
17 |
15 16
|
ax-mp |
β’ ( ( π βΎ π¦ ) = β
β dom ( π βΎ π¦ ) = β
) |
18 |
14 17
|
bitrdi |
β’ ( π = ( π βΎ π¦ ) β ( π = β
β dom ( π βΎ π¦ ) = β
) ) |
19 |
|
dmeq |
β’ ( π = ( π βΎ π¦ ) β dom π = dom ( π βΎ π¦ ) ) |
20 |
|
limeq |
β’ ( dom π = dom ( π βΎ π¦ ) β ( Lim dom π β Lim dom ( π βΎ π¦ ) ) ) |
21 |
19 20
|
syl |
β’ ( π = ( π βΎ π¦ ) β ( Lim dom π β Lim dom ( π βΎ π¦ ) ) ) |
22 |
|
rneq |
β’ ( π = ( π βΎ π¦ ) β ran π = ran ( π βΎ π¦ ) ) |
23 |
|
df-ima |
β’ ( π β π¦ ) = ran ( π βΎ π¦ ) |
24 |
22 23
|
eqtr4di |
β’ ( π = ( π βΎ π¦ ) β ran π = ( π β π¦ ) ) |
25 |
24
|
unieqd |
β’ ( π = ( π βΎ π¦ ) β βͺ ran π = βͺ ( π β π¦ ) ) |
26 |
|
id |
β’ ( π = ( π βΎ π¦ ) β π = ( π βΎ π¦ ) ) |
27 |
19
|
unieqd |
β’ ( π = ( π βΎ π¦ ) β βͺ dom π = βͺ dom ( π βΎ π¦ ) ) |
28 |
26 27
|
fveq12d |
β’ ( π = ( π βΎ π¦ ) β ( π β βͺ dom π ) = ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) |
29 |
28
|
fveq2d |
β’ ( π = ( π βΎ π¦ ) β ( πΉ β ( π β βͺ dom π ) ) = ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) |
30 |
21 25 29
|
ifbieq12d |
β’ ( π = ( π βΎ π¦ ) β if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) = if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) |
31 |
18 30
|
ifbieq2d |
β’ ( π = ( π βΎ π¦ ) β if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) = if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) ) |
32 |
|
eqid |
β’ ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) = ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) |
33 |
|
vex |
β’ π β V |
34 |
|
imaexg |
β’ ( π β V β ( π β π¦ ) β V ) |
35 |
12 34
|
ax-mp |
β’ ( π β π¦ ) β V |
36 |
35
|
uniex |
β’ βͺ ( π β π¦ ) β V |
37 |
|
fvex |
β’ ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) β V |
38 |
36 37
|
ifex |
β’ if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) β V |
39 |
33 38
|
ifex |
β’ if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) β V |
40 |
31 32 39
|
fvmpt |
β’ ( ( π βΎ π¦ ) β V β ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) = if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) ) |
41 |
13 40
|
ax-mp |
β’ ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) = if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) |
42 |
|
dmres |
β’ dom ( π βΎ π¦ ) = ( π¦ β© dom π ) |
43 |
|
onelss |
β’ ( π₯ β On β ( π¦ β π₯ β π¦ β π₯ ) ) |
44 |
43
|
imp |
β’ ( ( π₯ β On β§ π¦ β π₯ ) β π¦ β π₯ ) |
45 |
44
|
3adant2 |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β π¦ β π₯ ) |
46 |
|
fndm |
β’ ( π Fn π₯ β dom π = π₯ ) |
47 |
46
|
3ad2ant2 |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β dom π = π₯ ) |
48 |
45 47
|
sseqtrrd |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β π¦ β dom π ) |
49 |
|
df-ss |
β’ ( π¦ β dom π β ( π¦ β© dom π ) = π¦ ) |
50 |
48 49
|
sylib |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β ( π¦ β© dom π ) = π¦ ) |
51 |
42 50
|
eqtrid |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β dom ( π βΎ π¦ ) = π¦ ) |
52 |
|
eqeq1 |
β’ ( dom ( π βΎ π¦ ) = π¦ β ( dom ( π βΎ π¦ ) = β
β π¦ = β
) ) |
53 |
|
limeq |
β’ ( dom ( π βΎ π¦ ) = π¦ β ( Lim dom ( π βΎ π¦ ) β Lim π¦ ) ) |
54 |
|
unieq |
β’ ( dom ( π βΎ π¦ ) = π¦ β βͺ dom ( π βΎ π¦ ) = βͺ π¦ ) |
55 |
54
|
fveq2d |
β’ ( dom ( π βΎ π¦ ) = π¦ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) = ( ( π βΎ π¦ ) β βͺ π¦ ) ) |
56 |
55
|
fveq2d |
β’ ( dom ( π βΎ π¦ ) = π¦ β ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) = ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) |
57 |
53 56
|
ifbieq2d |
β’ ( dom ( π βΎ π¦ ) = π¦ β if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) = if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) |
58 |
52 57
|
ifbieq2d |
β’ ( dom ( π βΎ π¦ ) = π¦ β if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) ) |
59 |
|
onelon |
β’ ( ( π₯ β On β§ π¦ β π₯ ) β π¦ β On ) |
60 |
|
eloni |
β’ ( π¦ β On β Ord π¦ ) |
61 |
59 60
|
syl |
β’ ( ( π₯ β On β§ π¦ β π₯ ) β Ord π¦ ) |
62 |
61
|
3adant2 |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β Ord π¦ ) |
63 |
|
ordzsl |
β’ ( Ord π¦ β ( π¦ = β
β¨ β π§ β On π¦ = suc π§ β¨ Lim π¦ ) ) |
64 |
|
iftrue |
β’ ( π¦ = β
β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = π ) |
65 |
|
iftrue |
β’ ( π¦ = β
β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) = π ) |
66 |
64 65
|
eqtr4d |
β’ ( π¦ = β
β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
67 |
|
vex |
β’ π§ β V |
68 |
67
|
sucid |
β’ π§ β suc π§ |
69 |
|
fvres |
β’ ( π§ β suc π§ β ( ( π βΎ suc π§ ) β π§ ) = ( π β π§ ) ) |
70 |
68 69
|
ax-mp |
β’ ( ( π βΎ suc π§ ) β π§ ) = ( π β π§ ) |
71 |
|
eloni |
β’ ( π§ β On β Ord π§ ) |
72 |
|
ordunisuc |
β’ ( Ord π§ β βͺ suc π§ = π§ ) |
73 |
71 72
|
syl |
β’ ( π§ β On β βͺ suc π§ = π§ ) |
74 |
73
|
fveq2d |
β’ ( π§ β On β ( ( π βΎ suc π§ ) β βͺ suc π§ ) = ( ( π βΎ suc π§ ) β π§ ) ) |
75 |
73
|
fveq2d |
β’ ( π§ β On β ( π β βͺ suc π§ ) = ( π β π§ ) ) |
76 |
70 74 75
|
3eqtr4a |
β’ ( π§ β On β ( ( π βΎ suc π§ ) β βͺ suc π§ ) = ( π β βͺ suc π§ ) ) |
77 |
76
|
fveq2d |
β’ ( π§ β On β ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) = ( πΉ β ( π β βͺ suc π§ ) ) ) |
78 |
|
nsuceq0 |
β’ suc π§ β β
|
79 |
78
|
neii |
β’ Β¬ suc π§ = β
|
80 |
79
|
iffalsei |
β’ if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) ) = if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) |
81 |
|
nlimsucg |
β’ ( π§ β V β Β¬ Lim suc π§ ) |
82 |
|
iffalse |
β’ ( Β¬ Lim suc π§ β if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) = ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) |
83 |
67 81 82
|
mp2b |
β’ if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) = ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) |
84 |
80 83
|
eqtri |
β’ if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) ) = ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) |
85 |
79
|
iffalsei |
β’ if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) ) = if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) |
86 |
|
iffalse |
β’ ( Β¬ Lim suc π§ β if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) = ( πΉ β ( π β βͺ suc π§ ) ) ) |
87 |
67 81 86
|
mp2b |
β’ if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) = ( πΉ β ( π β βͺ suc π§ ) ) |
88 |
85 87
|
eqtri |
β’ if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) ) = ( πΉ β ( π β βͺ suc π§ ) ) |
89 |
77 84 88
|
3eqtr4g |
β’ ( π§ β On β if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) ) = if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) ) ) |
90 |
|
eqeq1 |
β’ ( π¦ = suc π§ β ( π¦ = β
β suc π§ = β
) ) |
91 |
|
limeq |
β’ ( π¦ = suc π§ β ( Lim π¦ β Lim suc π§ ) ) |
92 |
|
reseq2 |
β’ ( π¦ = suc π§ β ( π βΎ π¦ ) = ( π βΎ suc π§ ) ) |
93 |
|
unieq |
β’ ( π¦ = suc π§ β βͺ π¦ = βͺ suc π§ ) |
94 |
92 93
|
fveq12d |
β’ ( π¦ = suc π§ β ( ( π βΎ π¦ ) β βͺ π¦ ) = ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) |
95 |
94
|
fveq2d |
β’ ( π¦ = suc π§ β ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) = ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) |
96 |
91 95
|
ifbieq2d |
β’ ( π¦ = suc π§ β if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) = if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) ) |
97 |
90 96
|
ifbieq2d |
β’ ( π¦ = suc π§ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) ) ) |
98 |
93
|
fveq2d |
β’ ( π¦ = suc π§ β ( π β βͺ π¦ ) = ( π β βͺ suc π§ ) ) |
99 |
98
|
fveq2d |
β’ ( π¦ = suc π§ β ( πΉ β ( π β βͺ π¦ ) ) = ( πΉ β ( π β βͺ suc π§ ) ) ) |
100 |
91 99
|
ifbieq2d |
β’ ( π¦ = suc π§ β if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) = if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) ) |
101 |
90 100
|
ifbieq2d |
β’ ( π¦ = suc π§ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) = if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) ) ) |
102 |
97 101
|
eqeq12d |
β’ ( π¦ = suc π§ β ( if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) β if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ suc π§ ) β βͺ suc π§ ) ) ) ) = if ( suc π§ = β
, π , if ( Lim suc π§ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ suc π§ ) ) ) ) ) ) |
103 |
89 102
|
syl5ibrcom |
β’ ( π§ β On β ( π¦ = suc π§ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
104 |
103
|
rexlimiv |
β’ ( β π§ β On π¦ = suc π§ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
105 |
|
iftrue |
β’ ( Lim π¦ β if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) = βͺ ( π β π¦ ) ) |
106 |
|
df-lim |
β’ ( Lim π¦ β ( Ord π¦ β§ π¦ β β
β§ π¦ = βͺ π¦ ) ) |
107 |
106
|
simp2bi |
β’ ( Lim π¦ β π¦ β β
) |
108 |
107
|
neneqd |
β’ ( Lim π¦ β Β¬ π¦ = β
) |
109 |
108
|
iffalsed |
β’ ( Lim π¦ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) |
110 |
|
iftrue |
β’ ( Lim π¦ β if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) = βͺ ( π β π¦ ) ) |
111 |
105 109 110
|
3eqtr4d |
β’ ( Lim π¦ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) |
112 |
108
|
iffalsed |
β’ ( Lim π¦ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) = if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) |
113 |
111 112
|
eqtr4d |
β’ ( Lim π¦ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
114 |
66 104 113
|
3jaoi |
β’ ( ( π¦ = β
β¨ β π§ β On π¦ = suc π§ β¨ Lim π¦ ) β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
115 |
63 114
|
sylbi |
β’ ( Ord π¦ β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
116 |
62 115
|
syl |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ π¦ ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
117 |
58 116
|
sylan9eqr |
β’ ( ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β§ dom ( π βΎ π¦ ) = π¦ ) β if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
118 |
51 117
|
mpdan |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β if ( dom ( π βΎ π¦ ) = β
, π , if ( Lim dom ( π βΎ π¦ ) , βͺ ( π β π¦ ) , ( πΉ β ( ( π βΎ π¦ ) β βͺ dom ( π βΎ π¦ ) ) ) ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
119 |
41 118
|
eqtrid |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) |
120 |
119
|
eqeq2d |
β’ ( ( π₯ β On β§ π Fn π₯ β§ π¦ β π₯ ) β ( ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) β ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
121 |
120
|
3expa |
β’ ( ( ( π₯ β On β§ π Fn π₯ ) β§ π¦ β π₯ ) β ( ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) β ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
122 |
121
|
ralbidva |
β’ ( ( π₯ β On β§ π Fn π₯ ) β ( β π¦ β π₯ ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) β β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
123 |
122
|
pm5.32da |
β’ ( π₯ β On β ( ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) ) β ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) ) |
124 |
123
|
rexbiia |
β’ ( β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) ) β β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) ) |
125 |
124
|
abbii |
β’ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) ) } = { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } |
126 |
125
|
unieqi |
β’ βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = ( ( π β V β¦ if ( π = β
, π , if ( Lim dom π , βͺ ran π , ( πΉ β ( π β βͺ dom π ) ) ) ) ) β ( π βΎ π¦ ) ) ) } = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } |
127 |
10 11 126
|
3eqtri |
β’ rec ( πΉ , π ) = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, π , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } |
128 |
9 127
|
vtoclg |
β’ ( πΌ β π β rec ( πΉ , πΌ ) = βͺ { π β£ β π₯ β On ( π Fn π₯ β§ β π¦ β π₯ ( π β π¦ ) = if ( π¦ = β
, πΌ , if ( Lim π¦ , βͺ ( π β π¦ ) , ( πΉ β ( π β βͺ π¦ ) ) ) ) ) } ) |