| Step | Hyp | Ref | Expression | 
						
							| 1 |  | rdgeq2 | ⊢ ( 𝑖  =  𝐼  →  rec ( 𝐹 ,  𝑖 )  =  rec ( 𝐹 ,  𝐼 ) ) | 
						
							| 2 |  | ifeq1 | ⊢ ( 𝑖  =  𝐼  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 3 | 2 | eqeq2d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 4 | 3 | ralbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 5 | 4 | anbi2d | ⊢ ( 𝑖  =  𝐼  →  ( ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) )  ↔  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 6 | 5 | rexbidv | ⊢ ( 𝑖  =  𝐼  →  ( ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) )  ↔  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 7 | 6 | abbidv | ⊢ ( 𝑖  =  𝐼  →  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 8 | 7 | unieqd | ⊢ ( 𝑖  =  𝐼  →  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 9 | 1 8 | eqeq12d | ⊢ ( 𝑖  =  𝐼  →  ( rec ( 𝐹 ,  𝑖 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  ↔  rec ( 𝐹 ,  𝐼 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) ) | 
						
							| 10 |  | df-rdg | ⊢ rec ( 𝐹 ,  𝑖 )  =  recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ) | 
						
							| 11 |  | dfrecs3 | ⊢ recs ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) ) ) } | 
						
							| 12 |  | vex | ⊢ 𝑓  ∈  V | 
						
							| 13 | 12 | resex | ⊢ ( 𝑓  ↾  𝑦 )  ∈  V | 
						
							| 14 |  | eqeq1 | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ( 𝑔  =  ∅  ↔  ( 𝑓  ↾  𝑦 )  =  ∅ ) ) | 
						
							| 15 |  | relres | ⊢ Rel  ( 𝑓  ↾  𝑦 ) | 
						
							| 16 |  | reldm0 | ⊢ ( Rel  ( 𝑓  ↾  𝑦 )  →  ( ( 𝑓  ↾  𝑦 )  =  ∅  ↔  dom  ( 𝑓  ↾  𝑦 )  =  ∅ ) ) | 
						
							| 17 | 15 16 | ax-mp | ⊢ ( ( 𝑓  ↾  𝑦 )  =  ∅  ↔  dom  ( 𝑓  ↾  𝑦 )  =  ∅ ) | 
						
							| 18 | 14 17 | bitrdi | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ( 𝑔  =  ∅  ↔  dom  ( 𝑓  ↾  𝑦 )  =  ∅ ) ) | 
						
							| 19 |  | dmeq | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  dom  𝑔  =  dom  ( 𝑓  ↾  𝑦 ) ) | 
						
							| 20 |  | limeq | ⊢ ( dom  𝑔  =  dom  ( 𝑓  ↾  𝑦 )  →  ( Lim  dom  𝑔  ↔  Lim  dom  ( 𝑓  ↾  𝑦 ) ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ( Lim  dom  𝑔  ↔  Lim  dom  ( 𝑓  ↾  𝑦 ) ) ) | 
						
							| 22 |  | rneq | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ran  𝑔  =  ran  ( 𝑓  ↾  𝑦 ) ) | 
						
							| 23 |  | df-ima | ⊢ ( 𝑓  “  𝑦 )  =  ran  ( 𝑓  ↾  𝑦 ) | 
						
							| 24 | 22 23 | eqtr4di | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ran  𝑔  =  ( 𝑓  “  𝑦 ) ) | 
						
							| 25 | 24 | unieqd | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ∪  ran  𝑔  =  ∪  ( 𝑓  “  𝑦 ) ) | 
						
							| 26 |  | id | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  𝑔  =  ( 𝑓  ↾  𝑦 ) ) | 
						
							| 27 | 19 | unieqd | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ∪  dom  𝑔  =  ∪  dom  ( 𝑓  ↾  𝑦 ) ) | 
						
							| 28 | 26 27 | fveq12d | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ( 𝑔 ‘ ∪  dom  𝑔 )  =  ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) | 
						
							| 29 | 28 | fveq2d | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) )  =  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) | 
						
							| 30 | 21 25 29 | ifbieq12d | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) )  =  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 31 | 18 30 | ifbieq2d | ⊢ ( 𝑔  =  ( 𝑓  ↾  𝑦 )  →  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) ) ) | 
						
							| 32 |  | eqid | ⊢ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 33 |  | vex | ⊢ 𝑖  ∈  V | 
						
							| 34 |  | imaexg | ⊢ ( 𝑓  ∈  V  →  ( 𝑓  “  𝑦 )  ∈  V ) | 
						
							| 35 | 12 34 | ax-mp | ⊢ ( 𝑓  “  𝑦 )  ∈  V | 
						
							| 36 | 35 | uniex | ⊢ ∪  ( 𝑓  “  𝑦 )  ∈  V | 
						
							| 37 |  | fvex | ⊢ ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) )  ∈  V | 
						
							| 38 | 36 37 | ifex | ⊢ if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) )  ∈  V | 
						
							| 39 | 33 38 | ifex | ⊢ if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) )  ∈  V | 
						
							| 40 | 31 32 39 | fvmpt | ⊢ ( ( 𝑓  ↾  𝑦 )  ∈  V  →  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) )  =  if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) ) ) | 
						
							| 41 | 13 40 | ax-mp | ⊢ ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) )  =  if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) ) | 
						
							| 42 |  | dmres | ⊢ dom  ( 𝑓  ↾  𝑦 )  =  ( 𝑦  ∩  dom  𝑓 ) | 
						
							| 43 |  | onelss | ⊢ ( 𝑥  ∈  On  →  ( 𝑦  ∈  𝑥  →  𝑦  ⊆  𝑥 ) ) | 
						
							| 44 | 43 | imp | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ⊆  𝑥 ) | 
						
							| 45 | 44 | 3adant2 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  𝑦  ⊆  𝑥 ) | 
						
							| 46 |  | fndm | ⊢ ( 𝑓  Fn  𝑥  →  dom  𝑓  =  𝑥 ) | 
						
							| 47 | 46 | 3ad2ant2 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  dom  𝑓  =  𝑥 ) | 
						
							| 48 | 45 47 | sseqtrrd | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  𝑦  ⊆  dom  𝑓 ) | 
						
							| 49 |  | dfss2 | ⊢ ( 𝑦  ⊆  dom  𝑓  ↔  ( 𝑦  ∩  dom  𝑓 )  =  𝑦 ) | 
						
							| 50 | 48 49 | sylib | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  ( 𝑦  ∩  dom  𝑓 )  =  𝑦 ) | 
						
							| 51 | 42 50 | eqtrid | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  dom  ( 𝑓  ↾  𝑦 )  =  𝑦 ) | 
						
							| 52 |  | eqeq1 | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  ( dom  ( 𝑓  ↾  𝑦 )  =  ∅  ↔  𝑦  =  ∅ ) ) | 
						
							| 53 |  | limeq | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  ( Lim  dom  ( 𝑓  ↾  𝑦 )  ↔  Lim  𝑦 ) ) | 
						
							| 54 |  | unieq | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  ∪  dom  ( 𝑓  ↾  𝑦 )  =  ∪  𝑦 ) | 
						
							| 55 | 54 | fveq2d | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) )  =  ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) | 
						
							| 56 | 55 | fveq2d | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) )  =  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) | 
						
							| 57 | 53 56 | ifbieq2d | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) )  =  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) ) | 
						
							| 58 | 52 57 | ifbieq2d | ⊢ ( dom  ( 𝑓  ↾  𝑦 )  =  𝑦  →  if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 59 |  | onelon | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  𝑦  ∈  On ) | 
						
							| 60 |  | eloni | ⊢ ( 𝑦  ∈  On  →  Ord  𝑦 ) | 
						
							| 61 | 59 60 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑦  ∈  𝑥 )  →  Ord  𝑦 ) | 
						
							| 62 | 61 | 3adant2 | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  Ord  𝑦 ) | 
						
							| 63 |  | ordzsl | ⊢ ( Ord  𝑦  ↔  ( 𝑦  =  ∅  ∨  ∃ 𝑧  ∈  On 𝑦  =  suc  𝑧  ∨  Lim  𝑦 ) ) | 
						
							| 64 |  | iftrue | ⊢ ( 𝑦  =  ∅  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  𝑖 ) | 
						
							| 65 |  | iftrue | ⊢ ( 𝑦  =  ∅  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  =  𝑖 ) | 
						
							| 66 | 64 65 | eqtr4d | ⊢ ( 𝑦  =  ∅  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 67 |  | vex | ⊢ 𝑧  ∈  V | 
						
							| 68 | 67 | sucid | ⊢ 𝑧  ∈  suc  𝑧 | 
						
							| 69 |  | fvres | ⊢ ( 𝑧  ∈  suc  𝑧  →  ( ( 𝑓  ↾  suc  𝑧 ) ‘ 𝑧 )  =  ( 𝑓 ‘ 𝑧 ) ) | 
						
							| 70 | 68 69 | ax-mp | ⊢ ( ( 𝑓  ↾  suc  𝑧 ) ‘ 𝑧 )  =  ( 𝑓 ‘ 𝑧 ) | 
						
							| 71 |  | eloni | ⊢ ( 𝑧  ∈  On  →  Ord  𝑧 ) | 
						
							| 72 |  | ordunisuc | ⊢ ( Ord  𝑧  →  ∪  suc  𝑧  =  𝑧 ) | 
						
							| 73 | 71 72 | syl | ⊢ ( 𝑧  ∈  On  →  ∪  suc  𝑧  =  𝑧 ) | 
						
							| 74 | 73 | fveq2d | ⊢ ( 𝑧  ∈  On  →  ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 )  =  ( ( 𝑓  ↾  suc  𝑧 ) ‘ 𝑧 ) ) | 
						
							| 75 | 73 | fveq2d | ⊢ ( 𝑧  ∈  On  →  ( 𝑓 ‘ ∪  suc  𝑧 )  =  ( 𝑓 ‘ 𝑧 ) ) | 
						
							| 76 | 70 74 75 | 3eqtr4a | ⊢ ( 𝑧  ∈  On  →  ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 )  =  ( 𝑓 ‘ ∪  suc  𝑧 ) ) | 
						
							| 77 | 76 | fveq2d | ⊢ ( 𝑧  ∈  On  →  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) )  =  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 78 |  | nsuceq0 | ⊢ suc  𝑧  ≠  ∅ | 
						
							| 79 | 78 | neii | ⊢ ¬  suc  𝑧  =  ∅ | 
						
							| 80 | 79 | iffalsei | ⊢ if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) )  =  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 81 |  | nlimsucg | ⊢ ( 𝑧  ∈  V  →  ¬  Lim  suc  𝑧 ) | 
						
							| 82 |  | iffalse | ⊢ ( ¬  Lim  suc  𝑧  →  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) )  =  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 83 | 67 81 82 | mp2b | ⊢ if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) )  =  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) | 
						
							| 84 | 80 83 | eqtri | ⊢ if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) )  =  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) | 
						
							| 85 | 79 | iffalsei | ⊢ if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) )  =  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 86 |  | iffalse | ⊢ ( ¬  Lim  suc  𝑧  →  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 87 | 67 81 86 | mp2b | ⊢ if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) )  =  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) | 
						
							| 88 | 85 87 | eqtri | ⊢ if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) )  =  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) | 
						
							| 89 | 77 84 88 | 3eqtr4g | ⊢ ( 𝑧  ∈  On  →  if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) )  =  if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) ) ) | 
						
							| 90 |  | eqeq1 | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝑦  =  ∅  ↔  suc  𝑧  =  ∅ ) ) | 
						
							| 91 |  | limeq | ⊢ ( 𝑦  =  suc  𝑧  →  ( Lim  𝑦  ↔  Lim  suc  𝑧 ) ) | 
						
							| 92 |  | reseq2 | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝑓  ↾  𝑦 )  =  ( 𝑓  ↾  suc  𝑧 ) ) | 
						
							| 93 |  | unieq | ⊢ ( 𝑦  =  suc  𝑧  →  ∪  𝑦  =  ∪  suc  𝑧 ) | 
						
							| 94 | 92 93 | fveq12d | ⊢ ( 𝑦  =  suc  𝑧  →  ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 )  =  ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) | 
						
							| 95 | 94 | fveq2d | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) )  =  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 96 | 91 95 | ifbieq2d | ⊢ ( 𝑦  =  suc  𝑧  →  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) )  =  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) ) | 
						
							| 97 | 90 96 | ifbieq2d | ⊢ ( 𝑦  =  suc  𝑧  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) ) ) | 
						
							| 98 | 93 | fveq2d | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝑓 ‘ ∪  𝑦 )  =  ( 𝑓 ‘ ∪  suc  𝑧 ) ) | 
						
							| 99 | 98 | fveq2d | ⊢ ( 𝑦  =  suc  𝑧  →  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) )  =  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) | 
						
							| 100 | 91 99 | ifbieq2d | ⊢ ( 𝑦  =  suc  𝑧  →  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) )  =  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) ) | 
						
							| 101 | 90 100 | ifbieq2d | ⊢ ( 𝑦  =  suc  𝑧  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  =  if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) ) ) | 
						
							| 102 | 97 101 | eqeq12d | ⊢ ( 𝑦  =  suc  𝑧  →  ( if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  suc  𝑧 ) ‘ ∪  suc  𝑧 ) ) ) )  =  if ( suc  𝑧  =  ∅ ,  𝑖 ,  if ( Lim  suc  𝑧 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  suc  𝑧 ) ) ) ) ) ) | 
						
							| 103 | 89 102 | syl5ibrcom | ⊢ ( 𝑧  ∈  On  →  ( 𝑦  =  suc  𝑧  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 104 | 103 | rexlimiv | ⊢ ( ∃ 𝑧  ∈  On 𝑦  =  suc  𝑧  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 105 |  | iftrue | ⊢ ( Lim  𝑦  →  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) )  =  ∪  ( 𝑓  “  𝑦 ) ) | 
						
							| 106 |  | df-lim | ⊢ ( Lim  𝑦  ↔  ( Ord  𝑦  ∧  𝑦  ≠  ∅  ∧  𝑦  =  ∪  𝑦 ) ) | 
						
							| 107 | 106 | simp2bi | ⊢ ( Lim  𝑦  →  𝑦  ≠  ∅ ) | 
						
							| 108 | 107 | neneqd | ⊢ ( Lim  𝑦  →  ¬  𝑦  =  ∅ ) | 
						
							| 109 | 108 | iffalsed | ⊢ ( Lim  𝑦  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) ) | 
						
							| 110 |  | iftrue | ⊢ ( Lim  𝑦  →  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) )  =  ∪  ( 𝑓  “  𝑦 ) ) | 
						
							| 111 | 105 109 110 | 3eqtr4d | ⊢ ( Lim  𝑦  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) | 
						
							| 112 | 108 | iffalsed | ⊢ ( Lim  𝑦  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  =  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) | 
						
							| 113 | 111 112 | eqtr4d | ⊢ ( Lim  𝑦  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 114 | 66 104 113 | 3jaoi | ⊢ ( ( 𝑦  =  ∅  ∨  ∃ 𝑧  ∈  On 𝑦  =  suc  𝑧  ∨  Lim  𝑦 )  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 115 | 63 114 | sylbi | ⊢ ( Ord  𝑦  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 116 | 62 115 | syl | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 117 | 58 116 | sylan9eqr | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  ∧  dom  ( 𝑓  ↾  𝑦 )  =  𝑦 )  →  if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 118 | 51 117 | mpdan | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  if ( dom  ( 𝑓  ↾  𝑦 )  =  ∅ ,  𝑖 ,  if ( Lim  dom  ( 𝑓  ↾  𝑦 ) ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( ( 𝑓  ↾  𝑦 ) ‘ ∪  dom  ( 𝑓  ↾  𝑦 ) ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 119 | 41 118 | eqtrid | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 120 | 119 | eqeq2d | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 121 | 120 | 3expa | ⊢ ( ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥 )  ∧  𝑦  ∈  𝑥 )  →  ( ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 122 | 121 | ralbidva | ⊢ ( ( 𝑥  ∈  On  ∧  𝑓  Fn  𝑥 )  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 123 | 122 | pm5.32da | ⊢ ( 𝑥  ∈  On  →  ( ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) ) )  ↔  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 124 | 123 | rexbiia | ⊢ ( ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) ) )  ↔  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 125 | 124 | abbii | ⊢ { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } | 
						
							| 126 | 125 | unieqi | ⊢ ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝑖 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( 𝑓  ↾  𝑦 ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } | 
						
							| 127 | 10 11 126 | 3eqtri | ⊢ rec ( 𝐹 ,  𝑖 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝑖 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } | 
						
							| 128 | 9 127 | vtoclg | ⊢ ( 𝐼  ∈  𝑉  →  rec ( 𝐹 ,  𝐼 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) |