| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rdgeq2 |
⊢ ( 𝑖 = 𝐼 → rec ( 𝐹 , 𝑖 ) = rec ( 𝐹 , 𝐼 ) ) |
| 2 |
|
ifeq1 |
⊢ ( 𝑖 = 𝐼 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 3 |
2
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 4 |
3
|
ralbidv |
⊢ ( 𝑖 = 𝐼 → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 5 |
4
|
anbi2d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 6 |
5
|
rexbidv |
⊢ ( 𝑖 = 𝐼 → ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 7 |
6
|
abbidv |
⊢ ( 𝑖 = 𝐼 → { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 8 |
7
|
unieqd |
⊢ ( 𝑖 = 𝐼 → ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |
| 9 |
1 8
|
eqeq12d |
⊢ ( 𝑖 = 𝐼 → ( rec ( 𝐹 , 𝑖 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ↔ rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) ) |
| 10 |
|
df-rdg |
⊢ rec ( 𝐹 , 𝑖 ) = recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) |
| 11 |
|
dfrecs3 |
⊢ recs ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } |
| 12 |
|
vex |
⊢ 𝑓 ∈ V |
| 13 |
12
|
resex |
⊢ ( 𝑓 ↾ 𝑦 ) ∈ V |
| 14 |
|
eqeq1 |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝑔 = ∅ ↔ ( 𝑓 ↾ 𝑦 ) = ∅ ) ) |
| 15 |
|
relres |
⊢ Rel ( 𝑓 ↾ 𝑦 ) |
| 16 |
|
reldm0 |
⊢ ( Rel ( 𝑓 ↾ 𝑦 ) → ( ( 𝑓 ↾ 𝑦 ) = ∅ ↔ dom ( 𝑓 ↾ 𝑦 ) = ∅ ) ) |
| 17 |
15 16
|
ax-mp |
⊢ ( ( 𝑓 ↾ 𝑦 ) = ∅ ↔ dom ( 𝑓 ↾ 𝑦 ) = ∅ ) |
| 18 |
14 17
|
bitrdi |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝑔 = ∅ ↔ dom ( 𝑓 ↾ 𝑦 ) = ∅ ) ) |
| 19 |
|
dmeq |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → dom 𝑔 = dom ( 𝑓 ↾ 𝑦 ) ) |
| 20 |
|
limeq |
⊢ ( dom 𝑔 = dom ( 𝑓 ↾ 𝑦 ) → ( Lim dom 𝑔 ↔ Lim dom ( 𝑓 ↾ 𝑦 ) ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( Lim dom 𝑔 ↔ Lim dom ( 𝑓 ↾ 𝑦 ) ) ) |
| 22 |
|
rneq |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ran 𝑔 = ran ( 𝑓 ↾ 𝑦 ) ) |
| 23 |
|
df-ima |
⊢ ( 𝑓 “ 𝑦 ) = ran ( 𝑓 ↾ 𝑦 ) |
| 24 |
22 23
|
eqtr4di |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ran 𝑔 = ( 𝑓 “ 𝑦 ) ) |
| 25 |
24
|
unieqd |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ∪ ran 𝑔 = ∪ ( 𝑓 “ 𝑦 ) ) |
| 26 |
|
id |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → 𝑔 = ( 𝑓 ↾ 𝑦 ) ) |
| 27 |
19
|
unieqd |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ∪ dom 𝑔 = ∪ dom ( 𝑓 ↾ 𝑦 ) ) |
| 28 |
26 27
|
fveq12d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝑔 ‘ ∪ dom 𝑔 ) = ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) |
| 29 |
28
|
fveq2d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) |
| 30 |
21 25 29
|
ifbieq12d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) = if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 31 |
18 30
|
ifbieq2d |
⊢ ( 𝑔 = ( 𝑓 ↾ 𝑦 ) → if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) = if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
| 32 |
|
eqid |
⊢ ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) = ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) |
| 33 |
|
vex |
⊢ 𝑖 ∈ V |
| 34 |
|
imaexg |
⊢ ( 𝑓 ∈ V → ( 𝑓 “ 𝑦 ) ∈ V ) |
| 35 |
12 34
|
ax-mp |
⊢ ( 𝑓 “ 𝑦 ) ∈ V |
| 36 |
35
|
uniex |
⊢ ∪ ( 𝑓 “ 𝑦 ) ∈ V |
| 37 |
|
fvex |
⊢ ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ∈ V |
| 38 |
36 37
|
ifex |
⊢ if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ∈ V |
| 39 |
33 38
|
ifex |
⊢ if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) ∈ V |
| 40 |
31 32 39
|
fvmpt |
⊢ ( ( 𝑓 ↾ 𝑦 ) ∈ V → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) = if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) ) |
| 41 |
13 40
|
ax-mp |
⊢ ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) = if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) |
| 42 |
|
dmres |
⊢ dom ( 𝑓 ↾ 𝑦 ) = ( 𝑦 ∩ dom 𝑓 ) |
| 43 |
|
onelss |
⊢ ( 𝑥 ∈ On → ( 𝑦 ∈ 𝑥 → 𝑦 ⊆ 𝑥 ) ) |
| 44 |
43
|
imp |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 45 |
44
|
3adant2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 46 |
|
fndm |
⊢ ( 𝑓 Fn 𝑥 → dom 𝑓 = 𝑥 ) |
| 47 |
46
|
3ad2ant2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → dom 𝑓 = 𝑥 ) |
| 48 |
45 47
|
sseqtrrd |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ⊆ dom 𝑓 ) |
| 49 |
|
dfss2 |
⊢ ( 𝑦 ⊆ dom 𝑓 ↔ ( 𝑦 ∩ dom 𝑓 ) = 𝑦 ) |
| 50 |
48 49
|
sylib |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑦 ∩ dom 𝑓 ) = 𝑦 ) |
| 51 |
42 50
|
eqtrid |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → dom ( 𝑓 ↾ 𝑦 ) = 𝑦 ) |
| 52 |
|
eqeq1 |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( dom ( 𝑓 ↾ 𝑦 ) = ∅ ↔ 𝑦 = ∅ ) ) |
| 53 |
|
limeq |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( Lim dom ( 𝑓 ↾ 𝑦 ) ↔ Lim 𝑦 ) ) |
| 54 |
|
unieq |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ∪ dom ( 𝑓 ↾ 𝑦 ) = ∪ 𝑦 ) |
| 55 |
54
|
fveq2d |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) = ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) |
| 56 |
55
|
fveq2d |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) |
| 57 |
53 56
|
ifbieq2d |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) |
| 58 |
52 57
|
ifbieq2d |
⊢ ( dom ( 𝑓 ↾ 𝑦 ) = 𝑦 → if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) ) |
| 59 |
|
onelon |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ On ) |
| 60 |
|
eloni |
⊢ ( 𝑦 ∈ On → Ord 𝑦 ) |
| 61 |
59 60
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
| 62 |
61
|
3adant2 |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → Ord 𝑦 ) |
| 63 |
|
ordzsl |
⊢ ( Ord 𝑦 ↔ ( 𝑦 = ∅ ∨ ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦 ) ) |
| 64 |
|
iftrue |
⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = 𝑖 ) |
| 65 |
|
iftrue |
⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = 𝑖 ) |
| 66 |
64 65
|
eqtr4d |
⊢ ( 𝑦 = ∅ → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 67 |
|
vex |
⊢ 𝑧 ∈ V |
| 68 |
67
|
sucid |
⊢ 𝑧 ∈ suc 𝑧 |
| 69 |
|
fvres |
⊢ ( 𝑧 ∈ suc 𝑧 → ( ( 𝑓 ↾ suc 𝑧 ) ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 70 |
68 69
|
ax-mp |
⊢ ( ( 𝑓 ↾ suc 𝑧 ) ‘ 𝑧 ) = ( 𝑓 ‘ 𝑧 ) |
| 71 |
|
eloni |
⊢ ( 𝑧 ∈ On → Ord 𝑧 ) |
| 72 |
|
ordunisuc |
⊢ ( Ord 𝑧 → ∪ suc 𝑧 = 𝑧 ) |
| 73 |
71 72
|
syl |
⊢ ( 𝑧 ∈ On → ∪ suc 𝑧 = 𝑧 ) |
| 74 |
73
|
fveq2d |
⊢ ( 𝑧 ∈ On → ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) = ( ( 𝑓 ↾ suc 𝑧 ) ‘ 𝑧 ) ) |
| 75 |
73
|
fveq2d |
⊢ ( 𝑧 ∈ On → ( 𝑓 ‘ ∪ suc 𝑧 ) = ( 𝑓 ‘ 𝑧 ) ) |
| 76 |
70 74 75
|
3eqtr4a |
⊢ ( 𝑧 ∈ On → ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) = ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 77 |
76
|
fveq2d |
⊢ ( 𝑧 ∈ On → ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 78 |
|
nsuceq0 |
⊢ suc 𝑧 ≠ ∅ |
| 79 |
78
|
neii |
⊢ ¬ suc 𝑧 = ∅ |
| 80 |
79
|
iffalsei |
⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) |
| 81 |
|
nlimsucg |
⊢ ( 𝑧 ∈ V → ¬ Lim suc 𝑧 ) |
| 82 |
|
iffalse |
⊢ ( ¬ Lim suc 𝑧 → if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) |
| 83 |
67 81 82
|
mp2b |
⊢ if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) |
| 84 |
80 83
|
eqtri |
⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) |
| 85 |
79
|
iffalsei |
⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 86 |
|
iffalse |
⊢ ( ¬ Lim suc 𝑧 → if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 87 |
67 81 86
|
mp2b |
⊢ if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 88 |
85 87
|
eqtri |
⊢ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 89 |
77 84 88
|
3eqtr4g |
⊢ ( 𝑧 ∈ On → if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 90 |
|
eqeq1 |
⊢ ( 𝑦 = suc 𝑧 → ( 𝑦 = ∅ ↔ suc 𝑧 = ∅ ) ) |
| 91 |
|
limeq |
⊢ ( 𝑦 = suc 𝑧 → ( Lim 𝑦 ↔ Lim suc 𝑧 ) ) |
| 92 |
|
reseq2 |
⊢ ( 𝑦 = suc 𝑧 → ( 𝑓 ↾ 𝑦 ) = ( 𝑓 ↾ suc 𝑧 ) ) |
| 93 |
|
unieq |
⊢ ( 𝑦 = suc 𝑧 → ∪ 𝑦 = ∪ suc 𝑧 ) |
| 94 |
92 93
|
fveq12d |
⊢ ( 𝑦 = suc 𝑧 → ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) = ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) = ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) |
| 96 |
91 95
|
ifbieq2d |
⊢ ( 𝑦 = suc 𝑧 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) |
| 97 |
90 96
|
ifbieq2d |
⊢ ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 98 |
93
|
fveq2d |
⊢ ( 𝑦 = suc 𝑧 → ( 𝑓 ‘ ∪ 𝑦 ) = ( 𝑓 ‘ ∪ suc 𝑧 ) ) |
| 99 |
98
|
fveq2d |
⊢ ( 𝑦 = suc 𝑧 → ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) = ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) |
| 100 |
91 99
|
ifbieq2d |
⊢ ( 𝑦 = suc 𝑧 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) = if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) |
| 101 |
90 100
|
ifbieq2d |
⊢ ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) |
| 102 |
97 101
|
eqeq12d |
⊢ ( 𝑦 = suc 𝑧 → ( if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ↔ if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ suc 𝑧 ) ‘ ∪ suc 𝑧 ) ) ) ) = if ( suc 𝑧 = ∅ , 𝑖 , if ( Lim suc 𝑧 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ suc 𝑧 ) ) ) ) ) ) |
| 103 |
89 102
|
syl5ibrcom |
⊢ ( 𝑧 ∈ On → ( 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 104 |
103
|
rexlimiv |
⊢ ( ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 105 |
|
iftrue |
⊢ ( Lim 𝑦 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) = ∪ ( 𝑓 “ 𝑦 ) ) |
| 106 |
|
df-lim |
⊢ ( Lim 𝑦 ↔ ( Ord 𝑦 ∧ 𝑦 ≠ ∅ ∧ 𝑦 = ∪ 𝑦 ) ) |
| 107 |
106
|
simp2bi |
⊢ ( Lim 𝑦 → 𝑦 ≠ ∅ ) |
| 108 |
107
|
neneqd |
⊢ ( Lim 𝑦 → ¬ 𝑦 = ∅ ) |
| 109 |
108
|
iffalsed |
⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) |
| 110 |
|
iftrue |
⊢ ( Lim 𝑦 → if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) = ∪ ( 𝑓 “ 𝑦 ) ) |
| 111 |
105 109 110
|
3eqtr4d |
⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 112 |
108
|
iffalsed |
⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) = if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) |
| 113 |
111 112
|
eqtr4d |
⊢ ( Lim 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 114 |
66 104 113
|
3jaoi |
⊢ ( ( 𝑦 = ∅ ∨ ∃ 𝑧 ∈ On 𝑦 = suc 𝑧 ∨ Lim 𝑦 ) → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 115 |
63 114
|
sylbi |
⊢ ( Ord 𝑦 → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 116 |
62 115
|
syl |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ 𝑦 ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 117 |
58 116
|
sylan9eqr |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) ∧ dom ( 𝑓 ↾ 𝑦 ) = 𝑦 ) → if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 118 |
51 117
|
mpdan |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → if ( dom ( 𝑓 ↾ 𝑦 ) = ∅ , 𝑖 , if ( Lim dom ( 𝑓 ↾ 𝑦 ) , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( ( 𝑓 ↾ 𝑦 ) ‘ ∪ dom ( 𝑓 ↾ 𝑦 ) ) ) ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 119 |
41 118
|
eqtrid |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) |
| 120 |
119
|
eqeq2d |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 121 |
120
|
3expa |
⊢ ( ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ) ∧ 𝑦 ∈ 𝑥 ) → ( ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 122 |
121
|
ralbidva |
⊢ ( ( 𝑥 ∈ On ∧ 𝑓 Fn 𝑥 ) → ( ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ↔ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 123 |
122
|
pm5.32da |
⊢ ( 𝑥 ∈ On → ( ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) ) |
| 124 |
123
|
rexbiia |
⊢ ( ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) ↔ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) ) |
| 125 |
124
|
abbii |
⊢ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } = { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 126 |
125
|
unieqi |
⊢ ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = ( ( 𝑔 ∈ V ↦ if ( 𝑔 = ∅ , 𝑖 , if ( Lim dom 𝑔 , ∪ ran 𝑔 , ( 𝐹 ‘ ( 𝑔 ‘ ∪ dom 𝑔 ) ) ) ) ) ‘ ( 𝑓 ↾ 𝑦 ) ) ) } = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 127 |
10 11 126
|
3eqtri |
⊢ rec ( 𝐹 , 𝑖 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝑖 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } |
| 128 |
9 127
|
vtoclg |
⊢ ( 𝐼 ∈ 𝑉 → rec ( 𝐹 , 𝐼 ) = ∪ { 𝑓 ∣ ∃ 𝑥 ∈ On ( 𝑓 Fn 𝑥 ∧ ∀ 𝑦 ∈ 𝑥 ( 𝑓 ‘ 𝑦 ) = if ( 𝑦 = ∅ , 𝐼 , if ( Lim 𝑦 , ∪ ( 𝑓 “ 𝑦 ) , ( 𝐹 ‘ ( 𝑓 ‘ ∪ 𝑦 ) ) ) ) ) } ) |