| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfrdg2 | ⊢ ( 𝐼  ∈  V  →  rec ( 𝐹 ,  𝐼 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 2 |  | iftrue | ⊢ ( 𝐼  ∈  V  →  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ )  =  𝐼 ) | 
						
							| 3 | 2 | ifeq1d | ⊢ ( 𝐼  ∈  V  →  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 4 | 3 | eqeq2d | ⊢ ( 𝐼  ∈  V  →  ( ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 5 | 4 | ralbidv | ⊢ ( 𝐼  ∈  V  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 6 | 5 | anbi2d | ⊢ ( 𝐼  ∈  V  →  ( ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) )  ↔  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 7 | 6 | rexbidv | ⊢ ( 𝐼  ∈  V  →  ( ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) )  ↔  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 8 | 7 | abbidv | ⊢ ( 𝐼  ∈  V  →  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 9 | 8 | unieqd | ⊢ ( 𝐼  ∈  V  →  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  𝐼 ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 10 | 1 9 | eqtr4d | ⊢ ( 𝐼  ∈  V  →  rec ( 𝐹 ,  𝐼 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 11 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 12 |  | dfrdg2 | ⊢ ( ∅  ∈  V  →  rec ( 𝐹 ,  ∅ )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 13 | 11 12 | ax-mp | ⊢ rec ( 𝐹 ,  ∅ )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } | 
						
							| 14 |  | rdgprc | ⊢ ( ¬  𝐼  ∈  V  →  rec ( 𝐹 ,  𝐼 )  =  rec ( 𝐹 ,  ∅ ) ) | 
						
							| 15 |  | iffalse | ⊢ ( ¬  𝐼  ∈  V  →  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ )  =  ∅ ) | 
						
							| 16 | 15 | ifeq1d | ⊢ ( ¬  𝐼  ∈  V  →  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) | 
						
							| 17 | 16 | eqeq2d | ⊢ ( ¬  𝐼  ∈  V  →  ( ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 18 | 17 | ralbidv | ⊢ ( ¬  𝐼  ∈  V  →  ( ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) )  ↔  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) | 
						
							| 19 | 18 | anbi2d | ⊢ ( ¬  𝐼  ∈  V  →  ( ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) )  ↔  ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 20 | 19 | rexbidv | ⊢ ( ¬  𝐼  ∈  V  →  ( ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) )  ↔  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) ) ) | 
						
							| 21 | 20 | abbidv | ⊢ ( ¬  𝐼  ∈  V  →  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  =  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 22 | 21 | unieqd | ⊢ ( ¬  𝐼  ∈  V  →  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) }  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  ∅ ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 23 | 13 14 22 | 3eqtr4a | ⊢ ( ¬  𝐼  ∈  V  →  rec ( 𝐹 ,  𝐼 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } ) | 
						
							| 24 | 10 23 | pm2.61i | ⊢ rec ( 𝐹 ,  𝐼 )  =  ∪  { 𝑓  ∣  ∃ 𝑥  ∈  On ( 𝑓  Fn  𝑥  ∧  ∀ 𝑦  ∈  𝑥 ( 𝑓 ‘ 𝑦 )  =  if ( 𝑦  =  ∅ ,  if ( 𝐼  ∈  V ,  𝐼 ,  ∅ ) ,  if ( Lim  𝑦 ,  ∪  ( 𝑓  “  𝑦 ) ,  ( 𝐹 ‘ ( 𝑓 ‘ ∪  𝑦 ) ) ) ) ) } |