| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 0elon | ⊢ ∅  ∈  On | 
						
							| 2 |  | rdgval | ⊢ ( ∅  ∈  On  →  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐼 )  ↾  ∅ ) ) ) | 
						
							| 3 | 1 2 | ax-mp | ⊢ ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐼 )  ↾  ∅ ) ) | 
						
							| 4 |  | res0 | ⊢ ( rec ( 𝐹 ,  𝐼 )  ↾  ∅ )  =  ∅ | 
						
							| 5 | 4 | fveq2i | ⊢ ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ( rec ( 𝐹 ,  𝐼 )  ↾  ∅ ) )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ ) | 
						
							| 6 | 3 5 | eqtri | ⊢ ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ ) | 
						
							| 7 |  | eqeq1 | ⊢ ( 𝑔  =  ∅  →  ( 𝑔  =  ∅  ↔  ∅  =  ∅ ) ) | 
						
							| 8 |  | dmeq | ⊢ ( 𝑔  =  ∅  →  dom  𝑔  =  dom  ∅ ) | 
						
							| 9 |  | limeq | ⊢ ( dom  𝑔  =  dom  ∅  →  ( Lim  dom  𝑔  ↔  Lim  dom  ∅ ) ) | 
						
							| 10 | 8 9 | syl | ⊢ ( 𝑔  =  ∅  →  ( Lim  dom  𝑔  ↔  Lim  dom  ∅ ) ) | 
						
							| 11 |  | rneq | ⊢ ( 𝑔  =  ∅  →  ran  𝑔  =  ran  ∅ ) | 
						
							| 12 | 11 | unieqd | ⊢ ( 𝑔  =  ∅  →  ∪  ran  𝑔  =  ∪  ran  ∅ ) | 
						
							| 13 |  | id | ⊢ ( 𝑔  =  ∅  →  𝑔  =  ∅ ) | 
						
							| 14 | 8 | unieqd | ⊢ ( 𝑔  =  ∅  →  ∪  dom  𝑔  =  ∪  dom  ∅ ) | 
						
							| 15 | 13 14 | fveq12d | ⊢ ( 𝑔  =  ∅  →  ( 𝑔 ‘ ∪  dom  𝑔 )  =  ( ∅ ‘ ∪  dom  ∅ ) ) | 
						
							| 16 | 15 | fveq2d | ⊢ ( 𝑔  =  ∅  →  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) )  =  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) | 
						
							| 17 | 10 12 16 | ifbieq12d | ⊢ ( 𝑔  =  ∅  →  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) )  =  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) ) | 
						
							| 18 | 7 17 | ifbieq2d | ⊢ ( 𝑔  =  ∅  →  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  =  if ( ∅  =  ∅ ,  𝐼 ,  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) ) ) | 
						
							| 19 | 18 | eleq1d | ⊢ ( 𝑔  =  ∅  →  ( if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  ∈  V  ↔  if ( ∅  =  ∅ ,  𝐼 ,  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) )  ∈  V ) ) | 
						
							| 20 |  | eqid | ⊢ ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) | 
						
							| 21 | 20 | dmmpt | ⊢ dom  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  =  { 𝑔  ∈  V  ∣  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) )  ∈  V } | 
						
							| 22 | 19 21 | elrab2 | ⊢ ( ∅  ∈  dom  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  ↔  ( ∅  ∈  V  ∧  if ( ∅  =  ∅ ,  𝐼 ,  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) )  ∈  V ) ) | 
						
							| 23 |  | eqid | ⊢ ∅  =  ∅ | 
						
							| 24 | 23 | iftruei | ⊢ if ( ∅  =  ∅ ,  𝐼 ,  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) )  =  𝐼 | 
						
							| 25 | 24 | eleq1i | ⊢ ( if ( ∅  =  ∅ ,  𝐼 ,  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) )  ∈  V  ↔  𝐼  ∈  V ) | 
						
							| 26 | 25 | biimpi | ⊢ ( if ( ∅  =  ∅ ,  𝐼 ,  if ( Lim  dom  ∅ ,  ∪  ran  ∅ ,  ( 𝐹 ‘ ( ∅ ‘ ∪  dom  ∅ ) ) ) )  ∈  V  →  𝐼  ∈  V ) | 
						
							| 27 | 22 26 | simplbiim | ⊢ ( ∅  ∈  dom  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  →  𝐼  ∈  V ) | 
						
							| 28 |  | ndmfv | ⊢ ( ¬  ∅  ∈  dom  ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) )  →  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ )  =  ∅ ) | 
						
							| 29 | 27 28 | nsyl5 | ⊢ ( ¬  𝐼  ∈  V  →  ( ( 𝑔  ∈  V  ↦  if ( 𝑔  =  ∅ ,  𝐼 ,  if ( Lim  dom  𝑔 ,  ∪  ran  𝑔 ,  ( 𝐹 ‘ ( 𝑔 ‘ ∪  dom  𝑔 ) ) ) ) ) ‘ ∅ )  =  ∅ ) | 
						
							| 30 | 6 29 | eqtrid | ⊢ ( ¬  𝐼  ∈  V  →  ( rec ( 𝐹 ,  𝐼 ) ‘ ∅ )  =  ∅ ) |