Step |
Hyp |
Ref |
Expression |
1 |
|
fveq2 |
|- ( z = (/) -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` (/) ) ) |
2 |
|
fveq2 |
|- ( z = (/) -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` (/) ) ) |
3 |
1 2
|
eqeq12d |
|- ( z = (/) -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` (/) ) = ( rec ( F , (/) ) ` (/) ) ) ) |
4 |
3
|
imbi2d |
|- ( z = (/) -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = ( rec ( F , (/) ) ` (/) ) ) ) ) |
5 |
|
fveq2 |
|- ( z = y -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` y ) ) |
6 |
|
fveq2 |
|- ( z = y -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` y ) ) |
7 |
5 6
|
eqeq12d |
|- ( z = y -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
8 |
7
|
imbi2d |
|- ( z = y -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) ) |
9 |
|
fveq2 |
|- ( z = suc y -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` suc y ) ) |
10 |
|
fveq2 |
|- ( z = suc y -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` suc y ) ) |
11 |
9 10
|
eqeq12d |
|- ( z = suc y -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) |
12 |
11
|
imbi2d |
|- ( z = suc y -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) ) |
13 |
|
fveq2 |
|- ( z = x -> ( rec ( F , I ) ` z ) = ( rec ( F , I ) ` x ) ) |
14 |
|
fveq2 |
|- ( z = x -> ( rec ( F , (/) ) ` z ) = ( rec ( F , (/) ) ` x ) ) |
15 |
13 14
|
eqeq12d |
|- ( z = x -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
16 |
15
|
imbi2d |
|- ( z = x -> ( ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) <-> ( -. I e. _V -> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) ) |
17 |
|
rdgprc0 |
|- ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = (/) ) |
18 |
|
0ex |
|- (/) e. _V |
19 |
18
|
rdg0 |
|- ( rec ( F , (/) ) ` (/) ) = (/) |
20 |
17 19
|
eqtr4di |
|- ( -. I e. _V -> ( rec ( F , I ) ` (/) ) = ( rec ( F , (/) ) ` (/) ) ) |
21 |
|
fveq2 |
|- ( ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) -> ( F ` ( rec ( F , I ) ` y ) ) = ( F ` ( rec ( F , (/) ) ` y ) ) ) |
22 |
|
rdgsuc |
|- ( y e. On -> ( rec ( F , I ) ` suc y ) = ( F ` ( rec ( F , I ) ` y ) ) ) |
23 |
|
rdgsuc |
|- ( y e. On -> ( rec ( F , (/) ) ` suc y ) = ( F ` ( rec ( F , (/) ) ` y ) ) ) |
24 |
22 23
|
eqeq12d |
|- ( y e. On -> ( ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) <-> ( F ` ( rec ( F , I ) ` y ) ) = ( F ` ( rec ( F , (/) ) ` y ) ) ) ) |
25 |
21 24
|
syl5ibr |
|- ( y e. On -> ( ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) -> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) |
26 |
25
|
imim2d |
|- ( y e. On -> ( ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) -> ( -. I e. _V -> ( rec ( F , I ) ` suc y ) = ( rec ( F , (/) ) ` suc y ) ) ) ) |
27 |
|
r19.21v |
|- ( A. y e. z ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) <-> ( -. I e. _V -> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
28 |
|
limord |
|- ( Lim z -> Ord z ) |
29 |
|
ordsson |
|- ( Ord z -> z C_ On ) |
30 |
|
rdgfnon |
|- rec ( F , I ) Fn On |
31 |
|
rdgfnon |
|- rec ( F , (/) ) Fn On |
32 |
|
fvreseq |
|- ( ( ( rec ( F , I ) Fn On /\ rec ( F , (/) ) Fn On ) /\ z C_ On ) -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) <-> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
33 |
30 31 32
|
mpanl12 |
|- ( z C_ On -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) <-> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
34 |
28 29 33
|
3syl |
|- ( Lim z -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) <-> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) ) |
35 |
|
rneq |
|- ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> ran ( rec ( F , I ) |` z ) = ran ( rec ( F , (/) ) |` z ) ) |
36 |
|
df-ima |
|- ( rec ( F , I ) " z ) = ran ( rec ( F , I ) |` z ) |
37 |
|
df-ima |
|- ( rec ( F , (/) ) " z ) = ran ( rec ( F , (/) ) |` z ) |
38 |
35 36 37
|
3eqtr4g |
|- ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> ( rec ( F , I ) " z ) = ( rec ( F , (/) ) " z ) ) |
39 |
38
|
unieqd |
|- ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> U. ( rec ( F , I ) " z ) = U. ( rec ( F , (/) ) " z ) ) |
40 |
|
vex |
|- z e. _V |
41 |
|
rdglim |
|- ( ( z e. _V /\ Lim z ) -> ( rec ( F , I ) ` z ) = U. ( rec ( F , I ) " z ) ) |
42 |
|
rdglim |
|- ( ( z e. _V /\ Lim z ) -> ( rec ( F , (/) ) ` z ) = U. ( rec ( F , (/) ) " z ) ) |
43 |
41 42
|
eqeq12d |
|- ( ( z e. _V /\ Lim z ) -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> U. ( rec ( F , I ) " z ) = U. ( rec ( F , (/) ) " z ) ) ) |
44 |
40 43
|
mpan |
|- ( Lim z -> ( ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) <-> U. ( rec ( F , I ) " z ) = U. ( rec ( F , (/) ) " z ) ) ) |
45 |
39 44
|
syl5ibr |
|- ( Lim z -> ( ( rec ( F , I ) |` z ) = ( rec ( F , (/) ) |` z ) -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) |
46 |
34 45
|
sylbird |
|- ( Lim z -> ( A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) |
47 |
46
|
imim2d |
|- ( Lim z -> ( ( -. I e. _V -> A. y e. z ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) -> ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) ) |
48 |
27 47
|
syl5bi |
|- ( Lim z -> ( A. y e. z ( -. I e. _V -> ( rec ( F , I ) ` y ) = ( rec ( F , (/) ) ` y ) ) -> ( -. I e. _V -> ( rec ( F , I ) ` z ) = ( rec ( F , (/) ) ` z ) ) ) ) |
49 |
4 8 12 16 20 26 48
|
tfinds |
|- ( x e. On -> ( -. I e. _V -> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
50 |
49
|
com12 |
|- ( -. I e. _V -> ( x e. On -> ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
51 |
50
|
ralrimiv |
|- ( -. I e. _V -> A. x e. On ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) |
52 |
|
eqfnfv |
|- ( ( rec ( F , I ) Fn On /\ rec ( F , (/) ) Fn On ) -> ( rec ( F , I ) = rec ( F , (/) ) <-> A. x e. On ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) ) |
53 |
30 31 52
|
mp2an |
|- ( rec ( F , I ) = rec ( F , (/) ) <-> A. x e. On ( rec ( F , I ) ` x ) = ( rec ( F , (/) ) ` x ) ) |
54 |
51 53
|
sylibr |
|- ( -. I e. _V -> rec ( F , I ) = rec ( F , (/) ) ) |