Metamath Proof Explorer


Theorem dfrefrels2

Description: Alternate definition of the class of reflexive relations. This is a 0-ary class constant, which is recommended for definitions (see the 1. Guideline at https://us.metamath.org/ileuni/mathbox.html ). Proper classes (like _I , see iprc ) are not elements of this (or any) class: if a class is an element of another class, it is not a proper class but a set, see elex . So if we use 0-ary constant classes as our main definitions, they are valid only for sets, not for proper classes. For proper classes we use predicate-type definitions like df-refrel . See also the comment of df-rels .

Note that while elementhood in the class of relations cancels restriction of r in dfrefrels2 , it keeps restriction of _I : this is why the very similar definitions df-refs , df-syms and df-trs diverge when we switch from (general) sets to relations in dfrefrels2 , dfsymrels2 and dftrrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion dfrefrels2 RefRels=rRels|Idomr×ranrr

Proof

Step Hyp Ref Expression
1 df-refrels RefRels=RefsRels
2 df-refs Refs=r|Idomr×ranrSrdomr×ranr
3 inex1g rVrdomr×ranrV
4 3 elv rdomr×ranrV
5 brssr rdomr×ranrVIdomr×ranrSrdomr×ranrIdomr×ranrrdomr×ranr
6 4 5 ax-mp Idomr×ranrSrdomr×ranrIdomr×ranrrdomr×ranr
7 elrels6 rVrRelsrdomr×ranr=r
8 7 elv rRelsrdomr×ranr=r
9 8 biimpi rRelsrdomr×ranr=r
10 9 sseq2d rRelsIdomr×ranrrdomr×ranrIdomr×ranrr
11 6 10 bitrid rRelsIdomr×ranrSrdomr×ranrIdomr×ranrr
12 1 2 11 abeqinbi RefRels=rRels|Idomr×ranrr