Metamath Proof Explorer


Theorem dfrtrcl4

Description: Reflexive-transitive closure of a relation, expressed as the union of the zeroth power and the transitive closure. (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion dfrtrcl4 t* = r V r r 0 t+ r

Proof

Step Hyp Ref Expression
1 dfrtrcl3 t* = r V n 0 r r n
2 df-n0 0 = 0
3 2 equncomi 0 = 0
4 iuneq1 0 = 0 n 0 r r n = n 0 r r n
5 3 4 ax-mp n 0 r r n = n 0 r r n
6 iunxun n 0 r r n = n 0 r r n n r r n
7 5 6 eqtri n 0 r r n = n 0 r r n n r r n
8 c0ex 0 V
9 oveq2 n = 0 r r n = r r 0
10 8 9 iunxsn n 0 r r n = r r 0
11 10 a1i r V n 0 r r n = r r 0
12 oveq1 x = r x r n = r r n
13 12 iuneq2d x = r n x r n = n r r n
14 dftrcl3 t+ = x V n x r n
15 nnex V
16 ovex r r n V
17 15 16 iunex n r r n V
18 13 14 17 fvmpt r V t+ r = n r r n
19 18 eqcomd r V n r r n = t+ r
20 11 19 uneq12d r V n 0 r r n n r r n = r r 0 t+ r
21 7 20 syl5eq r V n 0 r r n = r r 0 t+ r
22 21 mpteq2ia r V n 0 r r n = r V r r 0 t+ r
23 1 22 eqtri t* = r V r r 0 t+ r