Metamath Proof Explorer


Theorem dfrtrcl3

Description: Reflexive-transitive closure of a relation, expressed as indexed union of powers of relations. Generalized from dfrtrcl2 . (Contributed by RP, 5-Jun-2020)

Ref Expression
Assertion dfrtrcl3 t* = r V n 0 r r n

Proof

Step Hyp Ref Expression
1 df-rtrcl t* = r V z | I dom r ran r z r z z z z
2 relexp0g r V r r 0 = I dom r ran r
3 nn0ex 0 V
4 0nn0 0 0
5 oveq1 a = t a r n = t r n
6 5 iuneq2d a = t n 0 a r n = n 0 t r n
7 oveq2 n = k t r n = t r k
8 7 cbviunv n 0 t r n = k 0 t r k
9 6 8 eqtrdi a = t n 0 a r n = k 0 t r k
10 9 cbvmptv a V n 0 a r n = t V k 0 t r k
11 10 ov2ssiunov2 r V 0 V 0 0 r r 0 a V n 0 a r n r
12 3 4 11 mp3an23 r V r r 0 a V n 0 a r n r
13 2 12 eqsstrrd r V I dom r ran r a V n 0 a r n r
14 relexp1g r V r r 1 = r
15 1nn0 1 0
16 10 ov2ssiunov2 r V 0 V 1 0 r r 1 a V n 0 a r n r
17 3 15 16 mp3an23 r V r r 1 a V n 0 a r n r
18 14 17 eqsstrrd r V r a V n 0 a r n r
19 nn0uz 0 = 0
20 10 iunrelexpuztr r V 0 = 0 0 0 a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
21 19 4 20 mp3an23 r V a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
22 fvex a V n 0 a r n r V
23 sseq2 z = a V n 0 a r n r I dom r ran r z I dom r ran r a V n 0 a r n r
24 sseq2 z = a V n 0 a r n r r z r a V n 0 a r n r
25 id z = a V n 0 a r n r z = a V n 0 a r n r
26 25 25 coeq12d z = a V n 0 a r n r z z = a V n 0 a r n r a V n 0 a r n r
27 26 25 sseq12d z = a V n 0 a r n r z z z a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
28 23 24 27 3anbi123d z = a V n 0 a r n r I dom r ran r z r z z z z I dom r ran r a V n 0 a r n r r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
29 28 a1i r V z = a V n 0 a r n r I dom r ran r z r z z z z I dom r ran r a V n 0 a r n r r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
30 29 alrimiv r V z z = a V n 0 a r n r I dom r ran r z r z z z z I dom r ran r a V n 0 a r n r r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
31 elabgt a V n 0 a r n r V z z = a V n 0 a r n r I dom r ran r z r z z z z I dom r ran r a V n 0 a r n r r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r z | I dom r ran r z r z z z z I dom r ran r a V n 0 a r n r r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
32 22 30 31 sylancr r V a V n 0 a r n r z | I dom r ran r z r z z z z I dom r ran r a V n 0 a r n r r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r a V n 0 a r n r
33 13 18 21 32 mpbir3and r V a V n 0 a r n r z | I dom r ran r z r z z z z
34 intss1 a V n 0 a r n r z | I dom r ran r z r z z z z z | I dom r ran r z r z z z z a V n 0 a r n r
35 33 34 syl r V z | I dom r ran r z r z z z z a V n 0 a r n r
36 vex s V
37 sseq2 z = s I dom r ran r z I dom r ran r s
38 sseq2 z = s r z r s
39 id z = s z = s
40 39 39 coeq12d z = s z z = s s
41 40 39 sseq12d z = s z z z s s s
42 37 38 41 3anbi123d z = s I dom r ran r z r z z z z I dom r ran r s r s s s s
43 36 42 elab s z | I dom r ran r z r z z z z I dom r ran r s r s s s s
44 eqid 0 = 0
45 10 iunrelexpmin2 r V 0 = 0 s I dom r ran r s r s s s s a V n 0 a r n r s
46 44 45 mpan2 r V s I dom r ran r s r s s s s a V n 0 a r n r s
47 46 19.21bi r V I dom r ran r s r s s s s a V n 0 a r n r s
48 43 47 syl5bi r V s z | I dom r ran r z r z z z z a V n 0 a r n r s
49 48 ralrimiv r V s z | I dom r ran r z r z z z z a V n 0 a r n r s
50 ssint a V n 0 a r n r z | I dom r ran r z r z z z z s z | I dom r ran r z r z z z z a V n 0 a r n r s
51 49 50 sylibr r V a V n 0 a r n r z | I dom r ran r z r z z z z
52 35 51 eqssd r V z | I dom r ran r z r z z z z = a V n 0 a r n r
53 oveq1 a = r a r n = r r n
54 53 iuneq2d a = r n 0 a r n = n 0 r r n
55 eqid a V n 0 a r n = a V n 0 a r n
56 ovex r r n V
57 3 56 iunex n 0 r r n V
58 54 55 57 fvmpt r V a V n 0 a r n r = n 0 r r n
59 52 58 eqtrd r V z | I dom r ran r z r z z z z = n 0 r r n
60 59 mpteq2ia r V z | I dom r ran r z r z z z z = r V n 0 r r n
61 1 60 eqtri t* = r V n 0 r r n