Step |
Hyp |
Ref |
Expression |
1 |
|
dfrtrcl3 |
⊢ t* = ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) |
2 |
|
df-n0 |
⊢ ℕ0 = ( ℕ ∪ { 0 } ) |
3 |
2
|
equncomi |
⊢ ℕ0 = ( { 0 } ∪ ℕ ) |
4 |
|
iuneq1 |
⊢ ( ℕ0 = ( { 0 } ∪ ℕ ) → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ( { 0 } ∪ ℕ ) ( 𝑟 ↑𝑟 𝑛 ) ) |
5 |
3 4
|
ax-mp |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ( { 0 } ∪ ℕ ) ( 𝑟 ↑𝑟 𝑛 ) |
6 |
|
iunxun |
⊢ ∪ 𝑛 ∈ ( { 0 } ∪ ℕ ) ( 𝑟 ↑𝑟 𝑛 ) = ( ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
7 |
5 6
|
eqtri |
⊢ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ( ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
8 |
|
c0ex |
⊢ 0 ∈ V |
9 |
|
oveq2 |
⊢ ( 𝑛 = 0 → ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 0 ) ) |
10 |
8 9
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 0 ) |
11 |
10
|
a1i |
⊢ ( 𝑟 ∈ V → ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 0 ) ) |
12 |
|
oveq1 |
⊢ ( 𝑥 = 𝑟 → ( 𝑥 ↑𝑟 𝑛 ) = ( 𝑟 ↑𝑟 𝑛 ) ) |
13 |
12
|
iuneq2d |
⊢ ( 𝑥 = 𝑟 → ∪ 𝑛 ∈ ℕ ( 𝑥 ↑𝑟 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
14 |
|
dftrcl3 |
⊢ t+ = ( 𝑥 ∈ V ↦ ∪ 𝑛 ∈ ℕ ( 𝑥 ↑𝑟 𝑛 ) ) |
15 |
|
nnex |
⊢ ℕ ∈ V |
16 |
|
ovex |
⊢ ( 𝑟 ↑𝑟 𝑛 ) ∈ V |
17 |
15 16
|
iunex |
⊢ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ∈ V |
18 |
13 14 17
|
fvmpt |
⊢ ( 𝑟 ∈ V → ( t+ ‘ 𝑟 ) = ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) |
19 |
18
|
eqcomd |
⊢ ( 𝑟 ∈ V → ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) = ( t+ ‘ 𝑟 ) ) |
20 |
11 19
|
uneq12d |
⊢ ( 𝑟 ∈ V → ( ∪ 𝑛 ∈ { 0 } ( 𝑟 ↑𝑟 𝑛 ) ∪ ∪ 𝑛 ∈ ℕ ( 𝑟 ↑𝑟 𝑛 ) ) = ( ( 𝑟 ↑𝑟 0 ) ∪ ( t+ ‘ 𝑟 ) ) ) |
21 |
7 20
|
syl5eq |
⊢ ( 𝑟 ∈ V → ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) = ( ( 𝑟 ↑𝑟 0 ) ∪ ( t+ ‘ 𝑟 ) ) ) |
22 |
21
|
mpteq2ia |
⊢ ( 𝑟 ∈ V ↦ ∪ 𝑛 ∈ ℕ0 ( 𝑟 ↑𝑟 𝑛 ) ) = ( 𝑟 ∈ V ↦ ( ( 𝑟 ↑𝑟 0 ) ∪ ( t+ ‘ 𝑟 ) ) ) |
23 |
1 22
|
eqtri |
⊢ t* = ( 𝑟 ∈ V ↦ ( ( 𝑟 ↑𝑟 0 ) ∪ ( t+ ‘ 𝑟 ) ) ) |