Metamath Proof Explorer


Theorem dfsymrels2

Description: Alternate definition of the class of symmetric relations. Cf. the comment of dfrefrels2 . (Contributed by Peter Mazsa, 20-Jul-2019)

Ref Expression
Assertion dfsymrels2 SymRels=rRels|r-1r

Proof

Step Hyp Ref Expression
1 df-symrels SymRels=SymsRels
2 df-syms Syms=r|rdomr×ranr-1Srdomr×ranr
3 inex1g rVrdomr×ranrV
4 3 elv rdomr×ranrV
5 brssr rdomr×ranrVrdomr×ranr-1Srdomr×ranrrdomr×ranr-1rdomr×ranr
6 4 5 ax-mp rdomr×ranr-1Srdomr×ranrrdomr×ranr-1rdomr×ranr
7 elrels6 rVrRelsrdomr×ranr=r
8 7 elv rRelsrdomr×ranr=r
9 8 biimpi rRelsrdomr×ranr=r
10 9 cnveqd rRelsrdomr×ranr-1=r-1
11 10 9 sseq12d rRelsrdomr×ranr-1rdomr×ranrr-1r
12 6 11 bitrid rRelsrdomr×ranr-1Srdomr×ranrr-1r
13 1 2 12 abeqinbi SymRels=rRels|r-1r