Metamath Proof Explorer


Theorem diaord

Description: The partial isomorphism A for a lattice K is order-preserving in the region under co-atom W . Part of Lemma M of Crawley p. 120 line 28. (Contributed by NM, 26-Nov-2013)

Ref Expression
Hypotheses dia11.b B=BaseK
dia11.l ˙=K
dia11.h H=LHypK
dia11.i I=DIsoAKW
Assertion diaord KHLWHXBX˙WYBY˙WIXIYX˙Y

Proof

Step Hyp Ref Expression
1 dia11.b B=BaseK
2 dia11.l ˙=K
3 dia11.h H=LHypK
4 dia11.i I=DIsoAKW
5 eqid LTrnKW=LTrnKW
6 eqid trLKW=trLKW
7 1 2 3 5 6 4 diaval KHLWHXBX˙WIX=fLTrnKW|trLKWf˙X
8 7 3adant3 KHLWHXBX˙WYBY˙WIX=fLTrnKW|trLKWf˙X
9 1 2 3 5 6 4 diaval KHLWHYBY˙WIY=fLTrnKW|trLKWf˙Y
10 9 3adant2 KHLWHXBX˙WYBY˙WIY=fLTrnKW|trLKWf˙Y
11 8 10 sseq12d KHLWHXBX˙WYBY˙WIXIYfLTrnKW|trLKWf˙XfLTrnKW|trLKWf˙Y
12 ss2rab fLTrnKW|trLKWf˙XfLTrnKW|trLKWf˙YfLTrnKWtrLKWf˙XtrLKWf˙Y
13 eqid AtomsK=AtomsK
14 1 2 13 3 5 6 trlord KHLWHXBX˙WYBY˙WX˙YfLTrnKWtrLKWf˙XtrLKWf˙Y
15 12 14 bitr4id KHLWHXBX˙WYBY˙WfLTrnKW|trLKWf˙XfLTrnKW|trLKWf˙YX˙Y
16 11 15 bitrd KHLWHXBX˙WYBY˙WIXIYX˙Y