Metamath Proof Explorer


Theorem dia11N

Description: The partial isomorphism A for a lattice K is one-to-one in the region under co-atom W . Part of Lemma M of Crawley p. 120 line 28. (Contributed by NM, 25-Nov-2013) (New usage is discouraged.)

Ref Expression
Hypotheses dia11.b B=BaseK
dia11.l ˙=K
dia11.h H=LHypK
dia11.i I=DIsoAKW
Assertion dia11N KHLWHXBX˙WYBY˙WIX=IYX=Y

Proof

Step Hyp Ref Expression
1 dia11.b B=BaseK
2 dia11.l ˙=K
3 dia11.h H=LHypK
4 dia11.i I=DIsoAKW
5 eqss IX=IYIXIYIYIX
6 1 2 3 4 diaord KHLWHXBX˙WYBY˙WIXIYX˙Y
7 1 2 3 4 diaord KHLWHYBY˙WXBX˙WIYIXY˙X
8 7 3com23 KHLWHXBX˙WYBY˙WIYIXY˙X
9 6 8 anbi12d KHLWHXBX˙WYBY˙WIXIYIYIXX˙YY˙X
10 simp1l KHLWHXBX˙WYBY˙WKHL
11 10 hllatd KHLWHXBX˙WYBY˙WKLat
12 simp2l KHLWHXBX˙WYBY˙WXB
13 simp3l KHLWHXBX˙WYBY˙WYB
14 1 2 latasymb KLatXBYBX˙YY˙XX=Y
15 11 12 13 14 syl3anc KHLWHXBX˙WYBY˙WX˙YY˙XX=Y
16 9 15 bitrd KHLWHXBX˙WYBY˙WIXIYIYIXX=Y
17 5 16 bitrid KHLWHXBX˙WYBY˙WIX=IYX=Y