Metamath Proof Explorer


Theorem diatrl

Description: Trace of a member of the partial isomorphism A. (Contributed by NM, 17-Jan-2014)

Ref Expression
Hypotheses diatrl.b B=BaseK
diatrl.l ˙=K
diatrl.h H=LHypK
diatrl.t T=LTrnKW
diatrl.r R=trLKW
diatrl.i I=DIsoAKW
Assertion diatrl KVWHXBX˙WFIXRF˙X

Proof

Step Hyp Ref Expression
1 diatrl.b B=BaseK
2 diatrl.l ˙=K
3 diatrl.h H=LHypK
4 diatrl.t T=LTrnKW
5 diatrl.r R=trLKW
6 diatrl.i I=DIsoAKW
7 1 2 3 4 5 6 diaelval KVWHXBX˙WFIXFTRF˙X
8 simpr FTRF˙XRF˙X
9 7 8 syl6bi KVWHXBX˙WFIXRF˙X
10 9 3impia KVWHXBX˙WFIXRF˙X