Metamath Proof Explorer


Theorem dibclN

Description: Closure of partial isomorphism B for a lattice K . (Contributed by NM, 8-Mar-2014) (New usage is discouraged.)

Ref Expression
Hypotheses dibcl.h H=LHypK
dibcl.i I=DIsoBKW
Assertion dibclN KHLWHXdomIIXranI

Proof

Step Hyp Ref Expression
1 dibcl.h H=LHypK
2 dibcl.i I=DIsoBKW
3 eqid DIsoAKW=DIsoAKW
4 1 3 2 dibfna KHLWHIFndomDIsoAKW
5 fnfun IFndomDIsoAKWFunI
6 4 5 syl KHLWHFunI
7 fvelrn FunIXdomIIXranI
8 6 7 sylan KHLWHXdomIIXranI