Metamath Proof Explorer


Theorem dibvalrel

Description: The value of partial isomorphism B is a relation. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dibcl.h H=LHypK
dibcl.i I=DIsoBKW
Assertion dibvalrel KVWHRelIX

Proof

Step Hyp Ref Expression
1 dibcl.h H=LHypK
2 dibcl.i I=DIsoBKW
3 relxp RelDIsoAKWX×hLTrnKWIBaseK
4 eqid DIsoAKW=DIsoAKW
5 1 4 2 dibdiadm KVWHdomI=domDIsoAKW
6 5 eleq2d KVWHXdomIXdomDIsoAKW
7 6 biimpa KVWHXdomIXdomDIsoAKW
8 eqid BaseK=BaseK
9 eqid LTrnKW=LTrnKW
10 eqid hLTrnKWIBaseK=hLTrnKWIBaseK
11 8 1 9 10 4 2 dibval KVWHXdomDIsoAKWIX=DIsoAKWX×hLTrnKWIBaseK
12 7 11 syldan KVWHXdomIIX=DIsoAKWX×hLTrnKWIBaseK
13 12 releqd KVWHXdomIRelIXRelDIsoAKWX×hLTrnKWIBaseK
14 3 13 mpbiri KVWHXdomIRelIX
15 rel0 Rel
16 ndmfv ¬XdomIIX=
17 16 releqd ¬XdomIRelIXRel
18 15 17 mpbiri ¬XdomIRelIX
19 18 adantl KVWH¬XdomIRelIX
20 14 19 pm2.61dan KVWHRelIX