Metamath Proof Explorer


Theorem difininv

Description: Condition for the intersections of two sets with a given set to be equal. (Contributed by Thierry Arnoux, 28-Dec-2021)

Ref Expression
Assertion difininv ACB=CAB=AB=CB

Proof

Step Hyp Ref Expression
1 indif1 ACB=ABC
2 1 eqeq1i ACB=ABC=
3 ssdif0 ABCABC=
4 2 3 sylbb2 ACB=ABC
5 4 adantr ACB=CAB=ABC
6 inss2 ABB
7 6 a1i ACB=CAB=ABB
8 5 7 ssind ACB=CAB=ABCB
9 indif1 CAB=CBA
10 9 eqeq1i CAB=CBA=
11 ssdif0 CBACBA=
12 10 11 sylbb2 CAB=CBA
13 12 adantl ACB=CAB=CBA
14 inss2 CBB
15 14 a1i ACB=CAB=CBB
16 13 15 ssind ACB=CAB=CBAB
17 8 16 eqssd ACB=CAB=AB=CB