Metamath Proof Explorer


Theorem difmap

Description: Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses difmap.a φAV
difmap.b φBW
difmap.v φCZ
difmap.n φC
Assertion difmap φABCACBC

Proof

Step Hyp Ref Expression
1 difmap.a φAV
2 difmap.b φBW
3 difmap.v φCZ
4 difmap.n φC
5 difssd φABA
6 mapss AVABAABCAC
7 1 5 6 syl2anc φABCAC
8 7 adantr φfABCABCAC
9 simpr φfABCfABC
10 8 9 sseldd φfABCfAC
11 n0 CxxC
12 4 11 sylib φxxC
13 12 adantr φfABCxxC
14 simpr xCf:CBf:CB
15 simpl xCf:CBxC
16 14 15 ffvelcdmd xCf:CBfxB
17 16 adantll φfABCxCf:CBfxB
18 elmapi fABCf:CAB
19 18 adantr fABCxCf:CAB
20 simpr fABCxCxC
21 19 20 ffvelcdmd fABCxCfxAB
22 eldifn fxAB¬fxB
23 21 22 syl fABCxC¬fxB
24 23 ad4ant23 φfABCxCf:CB¬fxB
25 17 24 pm2.65da φfABCxC¬f:CB
26 25 ex φfABCxC¬f:CB
27 26 exlimdv φfABCxxC¬f:CB
28 13 27 mpd φfABC¬f:CB
29 elmapg BWCZfBCf:CB
30 2 3 29 syl2anc φfBCf:CB
31 30 adantr φfABCfBCf:CB
32 28 31 mtbird φfABC¬fBC
33 10 32 eldifd φfABCfACBC
34 33 ralrimiva φfABCfACBC
35 dfss3 ABCACBCfABCfACBC
36 34 35 sylibr φABCACBC