Description: Difference of two sets exponentiations. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | difmap.a | |
|
difmap.b | |
||
difmap.v | |
||
difmap.n | |
||
Assertion | difmap | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difmap.a | |
|
2 | difmap.b | |
|
3 | difmap.v | |
|
4 | difmap.n | |
|
5 | difssd | |
|
6 | mapss | |
|
7 | 1 5 6 | syl2anc | |
8 | 7 | adantr | |
9 | simpr | |
|
10 | 8 9 | sseldd | |
11 | n0 | |
|
12 | 4 11 | sylib | |
13 | 12 | adantr | |
14 | simpr | |
|
15 | simpl | |
|
16 | 14 15 | ffvelcdmd | |
17 | 16 | adantll | |
18 | elmapi | |
|
19 | 18 | adantr | |
20 | simpr | |
|
21 | 19 20 | ffvelcdmd | |
22 | eldifn | |
|
23 | 21 22 | syl | |
24 | 23 | ad4ant23 | |
25 | 17 24 | pm2.65da | |
26 | 25 | ex | |
27 | 26 | exlimdv | |
28 | 13 27 | mpd | |
29 | elmapg | |
|
30 | 2 3 29 | syl2anc | |
31 | 30 | adantr | |
32 | 28 31 | mtbird | |
33 | 10 32 | eldifd | |
34 | 33 | ralrimiva | |
35 | dfss3 | |
|
36 | 34 35 | sylibr | |