Metamath Proof Explorer


Theorem diftpsn3

Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017) (Proof shortened by JJ, 23-Jul-2021)

Ref Expression
Assertion diftpsn3 ACBCABCC=AB

Proof

Step Hyp Ref Expression
1 disjprsn ACBCABC=
2 disj3 ABC=AB=ABC
3 1 2 sylib ACBCAB=ABC
4 3 eqcomd ACBCABC=AB
5 difid CC=
6 5 a1i ACBCCC=
7 4 6 uneq12d ACBCABCCC=AB
8 df-tp ABC=ABC
9 8 difeq1i ABCC=ABCC
10 difundir ABCC=ABCCC
11 9 10 eqtr2i ABCCC=ABCC
12 un0 AB=AB
13 7 11 12 3eqtr3g ACBCABCC=AB