Metamath Proof Explorer


Theorem digval

Description: The K th digit of a nonnegative real number R in the positional system with base B . (Contributed by AV, 23-May-2020)

Ref Expression
Assertion digval BKR0+∞KdigitBR=BKRmodB

Proof

Step Hyp Ref Expression
1 digfval BdigitB=k,r0+∞BkrmodB
2 1 3ad2ant1 BKR0+∞digitB=k,r0+∞BkrmodB
3 negeq k=Kk=K
4 3 oveq2d k=KBk=BK
5 4 adantr k=Kr=RBk=BK
6 simpr k=Kr=Rr=R
7 5 6 oveq12d k=Kr=RBkr=BKR
8 7 fveq2d k=Kr=RBkr=BKR
9 8 oveq1d k=Kr=RBkrmodB=BKRmodB
10 9 adantl BKR0+∞k=Kr=RBkrmodB=BKRmodB
11 simp2 BKR0+∞K
12 simp3 BKR0+∞R0+∞
13 ovexd BKR0+∞BKRmodBV
14 2 10 11 12 13 ovmpod BKR0+∞KdigitBR=BKRmodB