Metamath Proof Explorer


Theorem dih1cnv

Description: The isomorphism H converse value of the full vector space is the lattice one. (Contributed by NM, 19-Jun-2014)

Ref Expression
Hypotheses dih1cnv.h H = LHyp K
dih1cnv.m 1 ˙ = 1. K
dih1cnv.i I = DIsoH K W
dih1cnv.u U = DVecH K W
dih1cnv.v V = Base U
Assertion dih1cnv K HL W H I -1 V = 1 ˙

Proof

Step Hyp Ref Expression
1 dih1cnv.h H = LHyp K
2 dih1cnv.m 1 ˙ = 1. K
3 dih1cnv.i I = DIsoH K W
4 dih1cnv.u U = DVecH K W
5 dih1cnv.v V = Base U
6 2 1 3 4 5 dih1 K HL W H I 1 ˙ = V
7 6 fveq2d K HL W H I -1 I 1 ˙ = I -1 V
8 hlop K HL K OP
9 8 adantr K HL W H K OP
10 eqid Base K = Base K
11 10 2 op1cl K OP 1 ˙ Base K
12 9 11 syl K HL W H 1 ˙ Base K
13 10 1 3 dihcnvid1 K HL W H 1 ˙ Base K I -1 I 1 ˙ = 1 ˙
14 12 13 mpdan K HL W H I -1 I 1 ˙ = 1 ˙
15 7 14 eqtr3d K HL W H I -1 V = 1 ˙