Metamath Proof Explorer


Theorem dihcnvcl

Description: Closure of isomorphism H converse. (Contributed by NM, 8-Mar-2014)

Ref Expression
Hypotheses dihfn.b B=BaseK
dihfn.h H=LHypK
dihfn.i I=DIsoHKW
Assertion dihcnvcl KHLWHXranII-1XB

Proof

Step Hyp Ref Expression
1 dihfn.b B=BaseK
2 dihfn.h H=LHypK
3 dihfn.i I=DIsoHKW
4 eqid DVecHKW=DVecHKW
5 eqid LSubSpDVecHKW=LSubSpDVecHKW
6 1 2 3 4 5 dihf11 KHLWHI:B1-1LSubSpDVecHKW
7 f1f1orn I:B1-1LSubSpDVecHKWI:B1-1 ontoranI
8 6 7 syl KHLWHI:B1-1 ontoranI
9 f1ocnvdm I:B1-1 ontoranIXranII-1XB
10 8 9 sylan KHLWHXranII-1XB