Metamath Proof Explorer


Theorem dihdm

Description: Domain of isomorphism H. (Contributed by NM, 9-Mar-2014)

Ref Expression
Hypotheses dihfn.b B=BaseK
dihfn.h H=LHypK
dihfn.i I=DIsoHKW
Assertion dihdm KHLWHdomI=B

Proof

Step Hyp Ref Expression
1 dihfn.b B=BaseK
2 dihfn.h H=LHypK
3 dihfn.i I=DIsoHKW
4 1 2 3 dihfn KHLWHIFnB
5 4 fndmd KHLWHdomI=B