Metamath Proof Explorer


Theorem dihglblem4

Description: Isomorphism H of a lattice glb. (Contributed by NM, 21-Mar-2014)

Ref Expression
Hypotheses dihglblem.b B = Base K
dihglblem.l ˙ = K
dihglblem.m ˙ = meet K
dihglblem.g G = glb K
dihglblem.h H = LHyp K
dihglblem.t T = u B | v S u = v ˙ W
dihglblem.i J = DIsoB K W
dihglblem.ih I = DIsoH K W
Assertion dihglblem4 K HL W H S B S I G S x S I x

Proof

Step Hyp Ref Expression
1 dihglblem.b B = Base K
2 dihglblem.l ˙ = K
3 dihglblem.m ˙ = meet K
4 dihglblem.g G = glb K
5 dihglblem.h H = LHyp K
6 dihglblem.t T = u B | v S u = v ˙ W
7 dihglblem.i J = DIsoB K W
8 dihglblem.ih I = DIsoH K W
9 hlclat K HL K CLat
10 9 ad3antrrr K HL W H S B S x S K CLat
11 simplrl K HL W H S B S x S S B
12 simpr K HL W H S B S x S x S
13 1 2 4 clatglble K CLat S B x S G S ˙ x
14 10 11 12 13 syl3anc K HL W H S B S x S G S ˙ x
15 simpll K HL W H S B S x S K HL W H
16 1 4 clatglbcl K CLat S B G S B
17 10 11 16 syl2anc K HL W H S B S x S G S B
18 11 12 sseldd K HL W H S B S x S x B
19 1 2 5 8 dihord K HL W H G S B x B I G S I x G S ˙ x
20 15 17 18 19 syl3anc K HL W H S B S x S I G S I x G S ˙ x
21 14 20 mpbird K HL W H S B S x S I G S I x
22 21 ralrimiva K HL W H S B S x S I G S I x
23 ssiin I G S x S I x x S I G S I x
24 22 23 sylibr K HL W H S B S I G S x S I x