Metamath Proof Explorer


Theorem dihord

Description: The isomorphism H is order-preserving. Part of proof after Lemma N of Crawley p. 122 line 6. (Contributed by NM, 7-Mar-2014)

Ref Expression
Hypotheses dihord.b B=BaseK
dihord.l ˙=K
dihord.h H=LHypK
dihord.i I=DIsoHKW
Assertion dihord KHLWHXBYBIXIYX˙Y

Proof

Step Hyp Ref Expression
1 dihord.b B=BaseK
2 dihord.l ˙=K
3 dihord.h H=LHypK
4 dihord.i I=DIsoHKW
5 simpl1 KHLWHXBYBX˙WY˙WKHLWH
6 simpl2 KHLWHXBYBX˙WY˙WXB
7 simprl KHLWHXBYBX˙WY˙WX˙W
8 simpl3 KHLWHXBYBX˙WY˙WYB
9 simprr KHLWHXBYBX˙WY˙WY˙W
10 1 2 3 4 dihord3 KHLWHXBX˙WYBY˙WIXIYX˙Y
11 5 6 7 8 9 10 syl122anc KHLWHXBYBX˙WY˙WIXIYX˙Y
12 simpl1 KHLWHXBYBX˙W¬Y˙WKHLWH
13 simpl2 KHLWHXBYBX˙W¬Y˙WXB
14 simprl KHLWHXBYBX˙W¬Y˙WX˙W
15 simpl3 KHLWHXBYBX˙W¬Y˙WYB
16 simprr KHLWHXBYBX˙W¬Y˙W¬Y˙W
17 1 2 3 4 dihord5a KHLWHXBX˙WYB¬Y˙WIXIYX˙Y
18 1 2 3 4 dihord5b KHLWHXBX˙WYB¬Y˙WX˙YIXIY
19 17 18 impbida KHLWHXBX˙WYB¬Y˙WIXIYX˙Y
20 12 13 14 15 16 19 syl122anc KHLWHXBYBX˙W¬Y˙WIXIYX˙Y
21 simpl1 KHLWHXBYB¬X˙WY˙WKHLWH
22 simpl2 KHLWHXBYB¬X˙WY˙WXB
23 simprl KHLWHXBYB¬X˙WY˙W¬X˙W
24 simpl3 KHLWHXBYB¬X˙WY˙WYB
25 simprr KHLWHXBYB¬X˙WY˙WY˙W
26 1 2 3 4 dihord6a KHLWHXB¬X˙WYBY˙WIXIYX˙Y
27 1 2 3 4 dihord6b KHLWHXB¬X˙WYBY˙WX˙YIXIY
28 26 27 impbida KHLWHXB¬X˙WYBY˙WIXIYX˙Y
29 21 22 23 24 25 28 syl122anc KHLWHXBYB¬X˙WY˙WIXIYX˙Y
30 simpl1 KHLWHXBYB¬X˙W¬Y˙WKHLWH
31 simpl2 KHLWHXBYB¬X˙W¬Y˙WXB
32 simprl KHLWHXBYB¬X˙W¬Y˙W¬X˙W
33 simpl3 KHLWHXBYB¬X˙W¬Y˙WYB
34 simprr KHLWHXBYB¬X˙W¬Y˙W¬Y˙W
35 1 2 3 4 dihord4 KHLWHXB¬X˙WYB¬Y˙WIXIYX˙Y
36 30 31 32 33 34 35 syl122anc KHLWHXBYB¬X˙W¬Y˙WIXIYX˙Y
37 11 20 29 36 4casesdan KHLWHXBYBIXIYX˙Y