Metamath Proof Explorer


Theorem dilfsetN

Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses dilset.a A=AtomsK
dilset.s S=PSubSpK
dilset.w W=WAtomsK
dilset.m M=PAutK
dilset.l L=DilK
Assertion dilfsetN KBL=dAfM|xSxWdfx=x

Proof

Step Hyp Ref Expression
1 dilset.a A=AtomsK
2 dilset.s S=PSubSpK
3 dilset.w W=WAtomsK
4 dilset.m M=PAutK
5 dilset.l L=DilK
6 elex KBKV
7 fveq2 k=KAtomsk=AtomsK
8 7 1 eqtr4di k=KAtomsk=A
9 fveq2 k=KPAutk=PAutK
10 9 4 eqtr4di k=KPAutk=M
11 fveq2 k=KPSubSpk=PSubSpK
12 11 2 eqtr4di k=KPSubSpk=S
13 fveq2 k=KWAtomsk=WAtomsK
14 13 3 eqtr4di k=KWAtomsk=W
15 14 fveq1d k=KWAtomskd=Wd
16 15 sseq2d k=KxWAtomskdxWd
17 16 imbi1d k=KxWAtomskdfx=xxWdfx=x
18 12 17 raleqbidv k=KxPSubSpkxWAtomskdfx=xxSxWdfx=x
19 10 18 rabeqbidv k=KfPAutk|xPSubSpkxWAtomskdfx=x=fM|xSxWdfx=x
20 8 19 mpteq12dv k=KdAtomskfPAutk|xPSubSpkxWAtomskdfx=x=dAfM|xSxWdfx=x
21 df-dilN Dil=kVdAtomskfPAutk|xPSubSpkxWAtomskdfx=x
22 20 21 1 mptfvmpt KVDilK=dAfM|xSxWdfx=x
23 5 22 eqtrid KVL=dAfM|xSxWdfx=x
24 6 23 syl KBL=dAfM|xSxWdfx=x