Metamath Proof Explorer


Theorem dilfsetN

Description: The mapping from fiducial atom to set of dilations. (Contributed by NM, 30-Jan-2012) (New usage is discouraged.)

Ref Expression
Hypotheses dilset.a A = Atoms K
dilset.s S = PSubSp K
dilset.w W = WAtoms K
dilset.m M = PAut K
dilset.l L = Dil K
Assertion dilfsetN K B L = d A f M | x S x W d f x = x

Proof

Step Hyp Ref Expression
1 dilset.a A = Atoms K
2 dilset.s S = PSubSp K
3 dilset.w W = WAtoms K
4 dilset.m M = PAut K
5 dilset.l L = Dil K
6 elex K B K V
7 fveq2 k = K Atoms k = Atoms K
8 7 1 eqtr4di k = K Atoms k = A
9 fveq2 k = K PAut k = PAut K
10 9 4 eqtr4di k = K PAut k = M
11 fveq2 k = K PSubSp k = PSubSp K
12 11 2 eqtr4di k = K PSubSp k = S
13 fveq2 k = K WAtoms k = WAtoms K
14 13 3 eqtr4di k = K WAtoms k = W
15 14 fveq1d k = K WAtoms k d = W d
16 15 sseq2d k = K x WAtoms k d x W d
17 16 imbi1d k = K x WAtoms k d f x = x x W d f x = x
18 12 17 raleqbidv k = K x PSubSp k x WAtoms k d f x = x x S x W d f x = x
19 10 18 rabeqbidv k = K f PAut k | x PSubSp k x WAtoms k d f x = x = f M | x S x W d f x = x
20 8 19 mpteq12dv k = K d Atoms k f PAut k | x PSubSp k x WAtoms k d f x = x = d A f M | x S x W d f x = x
21 df-dilN Dil = k V d Atoms k f PAut k | x PSubSp k x WAtoms k d f x = x
22 20 21 1 mptfvmpt K V Dil K = d A f M | x S x W d f x = x
23 5 22 eqtrid K V L = d A f M | x S x W d f x = x
24 6 23 syl K B L = d A f M | x S x W d f x = x