Metamath Proof Explorer


Theorem dipassr

Description: "Associative" law for second argument of inner product (compare dipass ). (Contributed by NM, 22-Nov-2007) (New usage is discouraged.)

Ref Expression
Hypotheses ipass.1 X = BaseSet U
ipass.4 S = 𝑠OLD U
ipass.7 P = 𝑖OLD U
Assertion dipassr U CPreHil OLD A X B C X A P B S C = B A P C

Proof

Step Hyp Ref Expression
1 ipass.1 X = BaseSet U
2 ipass.4 S = 𝑠OLD U
3 ipass.7 P = 𝑖OLD U
4 3anrot A X B C X B C X A X
5 1 2 3 dipass U CPreHil OLD B C X A X B S C P A = B C P A
6 4 5 sylan2b U CPreHil OLD A X B C X B S C P A = B C P A
7 6 fveq2d U CPreHil OLD A X B C X B S C P A = B C P A
8 phnv U CPreHil OLD U NrmCVec
9 simpl U NrmCVec A X B C X U NrmCVec
10 1 2 nvscl U NrmCVec B C X B S C X
11 10 3adant3r1 U NrmCVec A X B C X B S C X
12 simpr1 U NrmCVec A X B C X A X
13 1 3 dipcj U NrmCVec B S C X A X B S C P A = A P B S C
14 9 11 12 13 syl3anc U NrmCVec A X B C X B S C P A = A P B S C
15 8 14 sylan U CPreHil OLD A X B C X B S C P A = A P B S C
16 simpr2 U NrmCVec A X B C X B
17 1 3 dipcl U NrmCVec C X A X C P A
18 17 3com23 U NrmCVec A X C X C P A
19 18 3adant3r2 U NrmCVec A X B C X C P A
20 16 19 cjmuld U NrmCVec A X B C X B C P A = B C P A
21 1 3 dipcj U NrmCVec C X A X C P A = A P C
22 21 3com23 U NrmCVec A X C X C P A = A P C
23 22 3adant3r2 U NrmCVec A X B C X C P A = A P C
24 23 oveq2d U NrmCVec A X B C X B C P A = B A P C
25 20 24 eqtrd U NrmCVec A X B C X B C P A = B A P C
26 8 25 sylan U CPreHil OLD A X B C X B C P A = B A P C
27 7 15 26 3eqtr3d U CPreHil OLD A X B C X A P B S C = B A P C