Metamath Proof Explorer


Theorem dirkerdenne0

Description: The Dirichlet Kernel denominator is never 0 . (Contributed by Glauco Siliprandi, 11-Dec-2019)

Ref Expression
Assertion dirkerdenne0 S¬Smod2π=02πsinS20

Proof

Step Hyp Ref Expression
1 2cnd S¬Smod2π=02
2 picn π
3 2 a1i S¬Smod2π=0π
4 1 3 mulcld S¬Smod2π=02π
5 recn SS
6 5 adantr S¬Smod2π=0S
7 6 halfcld S¬Smod2π=0S2
8 7 sincld S¬Smod2π=0sinS2
9 2ne0 20
10 9 a1i S¬Smod2π=020
11 0re 0
12 pipos 0<π
13 11 12 gtneii π0
14 13 a1i S¬Smod2π=0π0
15 1 3 10 14 mulne0d S¬Smod2π=02π0
16 6 1 3 10 14 divdiv1d S¬Smod2π=0S2π=S2π
17 simpr S¬Smod2π=0¬Smod2π=0
18 2rp 2+
19 pirp π+
20 rpmulcl 2+π+2π+
21 18 19 20 mp2an 2π+
22 mod0 S2π+Smod2π=0S2π
23 21 22 mpan2 SSmod2π=0S2π
24 23 adantr S¬Smod2π=0Smod2π=0S2π
25 17 24 mtbid S¬Smod2π=0¬S2π
26 16 25 eqneltrd S¬Smod2π=0¬S2π
27 sineq0 S2sinS2=0S2π
28 7 27 syl S¬Smod2π=0sinS2=0S2π
29 26 28 mtbird S¬Smod2π=0¬sinS2=0
30 29 neqned S¬Smod2π=0sinS20
31 4 8 15 30 mulne0d S¬Smod2π=02πsinS20