Metamath Proof Explorer


Theorem disjabrexf

Description: Rewriting a disjoint collection into a partition of its image set. (Contributed by Thierry Arnoux, 30-Dec-2016) (Revised by Thierry Arnoux, 9-Mar-2017)

Ref Expression
Hypothesis disjabrexf.1 _xA
Assertion disjabrexf DisjxABDisjyz|xAz=By

Proof

Step Hyp Ref Expression
1 disjabrexf.1 _xA
2 nfdisj1 xDisjxAB
3 nfcv _xy
4 1 nfcri xiA
5 nfcsb1v _xi/xB
6 5 nfcri xji/xB
7 4 6 nfan xiAji/xB
8 7 nfab _xi|iAji/xB
9 8 nfuni _xi|iAji/xB
10 9 nfcsb1 _xi|iAji/xB/xB
11 10 nfeq1 xi|iAji/xB/xB=y
12 3 11 nfralw xjyi|iAji/xB/xB=y
13 eqeq2 y=Bi|iAji/xB/xB=yi|iAji/xB/xB=B
14 13 raleqbi1dv y=Bjyi|iAji/xB/xB=yjBi|iAji/xB/xB=B
15 vex yV
16 15 a1i DisjxAByV
17 simplll DisjxABxAjBiAji/xBDisjxAB
18 simpllr DisjxABxAjBiAji/xBxA
19 simprl DisjxABxAjBiAji/xBiA
20 simplr DisjxABxAjBiAji/xBjB
21 simprr DisjxABxAjBiAji/xBji/xB
22 csbeq1a x=iB=i/xB
23 1 5 22 disjif2 DisjxABxAiAjBji/xBx=i
24 17 18 19 20 21 23 syl122anc DisjxABxAjBiAji/xBx=i
25 simpr DisjxABxAjBx=ix=i
26 simpllr DisjxABxAjBx=ixA
27 25 26 eqeltrrd DisjxABxAjBx=iiA
28 simplr DisjxABxAjBx=ijB
29 22 eleq2d x=ijBji/xB
30 25 29 syl DisjxABxAjBx=ijBji/xB
31 28 30 mpbid DisjxABxAjBx=iji/xB
32 27 31 jca DisjxABxAjBx=iiAji/xB
33 24 32 impbida DisjxABxAjBiAji/xBx=i
34 equcom x=ii=x
35 33 34 bitrdi DisjxABxAjBiAji/xBi=x
36 35 abbidv DisjxABxAjBi|iAji/xB=i|i=x
37 df-sn x=i|i=x
38 36 37 eqtr4di DisjxABxAjBi|iAji/xB=x
39 38 unieqd DisjxABxAjBi|iAji/xB=x
40 unisnv x=x
41 39 40 eqtrdi DisjxABxAjBi|iAji/xB=x
42 csbeq1 i|iAji/xB=xi|iAji/xB/xB=x/xB
43 csbid x/xB=B
44 42 43 eqtrdi i|iAji/xB=xi|iAji/xB/xB=B
45 41 44 syl DisjxABxAjBi|iAji/xB/xB=B
46 45 ralrimiva DisjxABxAjBi|iAji/xB/xB=B
47 2 12 14 16 46 elabreximd DisjxAByz|xAz=Bjyi|iAji/xB/xB=y
48 47 ralrimiva DisjxAByz|xAz=Bjyi|iAji/xB/xB=y
49 invdisj yz|xAz=Bjyi|iAji/xB/xB=yDisjyz|xAz=By
50 48 49 syl DisjxABDisjyz|xAz=By