| Step | Hyp | Ref | Expression | 
						
							| 1 |  | disjabrexf.1 |  | 
						
							| 2 |  | nfdisj1 |  | 
						
							| 3 |  | nfcv |  | 
						
							| 4 | 1 | nfcri |  | 
						
							| 5 |  | nfcsb1v |  | 
						
							| 6 | 5 | nfcri |  | 
						
							| 7 | 4 6 | nfan |  | 
						
							| 8 | 7 | nfab |  | 
						
							| 9 | 8 | nfuni |  | 
						
							| 10 | 9 | nfcsb1 |  | 
						
							| 11 | 10 | nfeq1 |  | 
						
							| 12 | 3 11 | nfralw |  | 
						
							| 13 |  | eqeq2 |  | 
						
							| 14 | 13 | raleqbi1dv |  | 
						
							| 15 |  | vex |  | 
						
							| 16 | 15 | a1i |  | 
						
							| 17 |  | simplll |  | 
						
							| 18 |  | simpllr |  | 
						
							| 19 |  | simprl |  | 
						
							| 20 |  | simplr |  | 
						
							| 21 |  | simprr |  | 
						
							| 22 |  | csbeq1a |  | 
						
							| 23 | 1 5 22 | disjif2 |  | 
						
							| 24 | 17 18 19 20 21 23 | syl122anc |  | 
						
							| 25 |  | simpr |  | 
						
							| 26 |  | simpllr |  | 
						
							| 27 | 25 26 | eqeltrrd |  | 
						
							| 28 |  | simplr |  | 
						
							| 29 | 22 | eleq2d |  | 
						
							| 30 | 25 29 | syl |  | 
						
							| 31 | 28 30 | mpbid |  | 
						
							| 32 | 27 31 | jca |  | 
						
							| 33 | 24 32 | impbida |  | 
						
							| 34 |  | equcom |  | 
						
							| 35 | 33 34 | bitrdi |  | 
						
							| 36 | 35 | abbidv |  | 
						
							| 37 |  | df-sn |  | 
						
							| 38 | 36 37 | eqtr4di |  | 
						
							| 39 | 38 | unieqd |  | 
						
							| 40 |  | unisnv |  | 
						
							| 41 | 39 40 | eqtrdi |  | 
						
							| 42 |  | csbeq1 |  | 
						
							| 43 |  | csbid |  | 
						
							| 44 | 42 43 | eqtrdi |  | 
						
							| 45 | 41 44 | syl |  | 
						
							| 46 | 45 | ralrimiva |  | 
						
							| 47 | 2 12 14 16 46 | elabreximd |  | 
						
							| 48 | 47 | ralrimiva |  | 
						
							| 49 |  | invdisj |  | 
						
							| 50 | 48 49 | syl |  |