Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)
Ref | Expression | ||
---|---|---|---|
Assertion | disjdmqscossss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjrel | |
|
2 | releldmqscoss | |
|
3 | 2 | elv | |
4 | 1 3 | syl | |
5 | disjlem19 | |
|
6 | 5 | elv | |
7 | 6 | ralrimivv | |
8 | 2r19.29 | |
|
9 | 8 | ex | |
10 | 7 9 | syl | |
11 | 4 10 | sylbid | |
12 | eqtr3 | |
|
13 | 12 | reximi | |
14 | 13 | reximi | |
15 | 11 14 | syl6 | |
16 | df-rex | |
|
17 | 19.41v | |
|
18 | 16 17 | bitri | |
19 | 18 | simprbi | |
20 | 19 | reximi | |
21 | 15 20 | syl6 | |
22 | eqcom | |
|
23 | 22 | rexbii | |
24 | 21 23 | imbitrdi | |
25 | 24 | ss2abdv | |
26 | abid1 | |
|
27 | df-qs | |
|
28 | 25 26 27 | 3sstr4g | |