Metamath Proof Explorer


Theorem disjdmqscossss

Description: Lemma for disjdmqseq via disjdmqs . (Contributed by Peter Mazsa, 16-Sep-2021)

Ref Expression
Assertion disjdmqscossss DisjRdomR/RdomR/R

Proof

Step Hyp Ref Expression
1 disjrel DisjRRelR
2 releldmqscoss vVRelRvdomR/RudomRxuRv=xR
3 2 elv RelRvdomR/RudomRxuRv=xR
4 1 3 syl DisjRvdomR/RudomRxuRv=xR
5 disjlem19 xVDisjRudomRxuRuR=xR
6 5 elv DisjRudomRxuRuR=xR
7 6 ralrimivv DisjRudomRxuRuR=xR
8 2r19.29 udomRxuRuR=xRudomRxuRv=xRudomRxuRuR=xRv=xR
9 8 ex udomRxuRuR=xRudomRxuRv=xRudomRxuRuR=xRv=xR
10 7 9 syl DisjRudomRxuRv=xRudomRxuRuR=xRv=xR
11 4 10 sylbid DisjRvdomR/RudomRxuRuR=xRv=xR
12 eqtr3 uR=xRv=xRuR=v
13 12 reximi xuRuR=xRv=xRxuRuR=v
14 13 reximi udomRxuRuR=xRv=xRudomRxuRuR=v
15 11 14 syl6 DisjRvdomR/RudomRxuRuR=v
16 df-rex xuRuR=vxxuRuR=v
17 19.41v xxuRuR=vxxuRuR=v
18 16 17 bitri xuRuR=vxxuRuR=v
19 18 simprbi xuRuR=vuR=v
20 19 reximi udomRxuRuR=vudomRuR=v
21 15 20 syl6 DisjRvdomR/RudomRuR=v
22 eqcom uR=vv=uR
23 22 rexbii udomRuR=vudomRv=uR
24 21 23 imbitrdi DisjRvdomR/RudomRv=uR
25 24 ss2abdv DisjRv|vdomR/Rv|udomRv=uR
26 abid1 domR/R=v|vdomR/R
27 df-qs domR/R=v|udomRv=uR
28 25 26 27 3sstr4g DisjRdomR/RdomR/R