Metamath Proof Explorer


Theorem disjlem17

Description: Lemma for disjdmqseq , partim2 and petlem via disjlem18 , (general version of the former prtlem17 ). (Contributed by Peter Mazsa, 10-Sep-2021)

Ref Expression
Assertion disjlem17 DisjRxdomRAxRydomRAyRByRBxR

Proof

Step Hyp Ref Expression
1 df-rex ydomRAyRByRyydomRAyRByR
2 an32 xdomRydomRAxRxdomRAxRydomR
3 disjlem14 DisjRxdomRydomRAxRAyRxR=yR
4 eleq2 xR=yRBxRByR
5 4 biimprd xR=yRByRBxR
6 3 5 syl8 DisjRxdomRydomRAxRAyRByRBxR
7 6 exp4a DisjRxdomRydomRAxRAyRByRBxR
8 7 impd DisjRxdomRydomRAxRAyRByRBxR
9 2 8 biimtrrid DisjRxdomRAxRydomRAyRByRBxR
10 9 expd DisjRxdomRAxRydomRAyRByRBxR
11 10 imp5a DisjRxdomRAxRydomRAyRByRBxR
12 11 imp4b DisjRxdomRAxRydomRAyRByRBxR
13 12 exlimdv DisjRxdomRAxRyydomRAyRByRBxR
14 1 13 biimtrid DisjRxdomRAxRydomRAyRByRBxR
15 14 ex DisjRxdomRAxRydomRAyRByRBxR